Theoretical Study of CN Radicals Chemisorption on the Electronic Properties of BC2N Nanotube


Article Preview

In this work, we have investigated the adsorption behavior of the CN radicals on electronic properties of BC2N nanotube (BC2NNT) by means of the B3LYP hybrid density functional method using 6-31G(d) basis set. The results show that CN radicals can be chemically adsorbed on the nanotube. Based on the energy analysis, the most stable position of CN radical on the nanotube is C1 site. Also, the C-side complexes are more stable than the N-side complexes. We investigated the effects of CN radicals adsorption on the electronic properties of the BC2N nanotube. According to our calculations, band gap energy of the BC2NNT decreases with increasing the number of CN radicals. It is predicted that the conductivity and reactivity of nanotube increase by increasing the number of CN radicals. Based on the NBO analysis, in all complexes charge transfer occurs from nanotube to CN radical. The AIM results show that, the Xtube…YCN interaction has covalent nature. Generally, The BC2N nanotube can be used to as sensor for nanodevice applications.






B. Makiabadi et al., "Theoretical Study of CN Radicals Chemisorption on the Electronic Properties of BC2N Nanotube", Journal of Nano Research, Vol. 48, pp. 38-48, 2017

Online since:

July 2017




* - Corresponding Author

[1] S. Iijima, Helical microtubules of graphitic carbon, Nature. 354 (1991) 56-58.

DOI: 10.1038/354056a0

[2] S.J. Sun, J.W. Fan, C.Y. Lin, The electrical conduction variation in stained carbon nanotubes, Physica E. 44 (2012) 803-807.

DOI: 10.1016/j.physe.2011.12.007

[3] S. Saha, T.C. Dinadayalane, D. Leszczynska, J. Leszczynski, Open and capped (5, 5) armchair SWCNTs: A comparative study of DFT-based reactivity descriptors, Chem. Phys. Lett. 541 (2012) 85-91.

DOI: 10.1016/j.cplett.2012.05.050

[4] A. Nojeh, G.W. Lakatos, S. Peng, K. Cho, R.F.W. Pease, A carbon nanotube cross structure as a nanoscale quantum device, Nano Lett. 3 (2003) 1187-1190.

DOI: 10.1021/nl034278b

[5] A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Springer-Verlag, Berlin, Heidelberg, (2008).

[6] S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley-VCH, Weinheim, Germany, (2004).

[7] F. Kreupl, Carbon Nanotubes in Microelectronic Applications, Wiley-VCH, Verlag GmbH & Co., KgaA, Weinheim, (2008).

[8] F. Cataldo, T. Da Ros, Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes, Springer-Verlag, Berlin, Heidelberg, (2008).

DOI: 10.1007/978-1-4020-6845-4

[9] L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Boron- and nitrogen-doped carbon nanotubes and grapheme, Inorg. Chim. Acta. 363 (2010) 4163-4174.

DOI: 10.1016/j.ica.2010.07.057

[10] X. Blase, J.C. Charlier, A. De Vita, R. Car, Theory of composite BxCyNz nanotube heterojunctions, Appl. Phys. Lett. 70 (1997) 197-199.

DOI: 10.1063/1.118354

[11] R. Sen, B.C. Satishkumar, A. Govindaraj, K.R. Harikumar, R. Gargi, J.P. Zhang, A.K. Cheetham, C.N.R. Rao, B–C–N, C–N and B–N nanotubes produced by the pyrolysis of precursor molecules over Co catalysts, Chem. Phys. Lett. 287 (1998) 671-676.

DOI: 10.1016/s0009-2614(98)00220-6

[12] Ph. Redlich, J. Loeffler, P.M. Ajayan, J. Bill, F. Aldinger, M. Rühle, B-C-N nanotubes and boron doping of carbon nanotubes, Chem. Phys. Lett. 260 (1996) 465-470.

DOI: 10.1016/0009-2614(96)00817-2

[13] X.D. Bai, J.D. Guo, J. Yu, E.G. Wang, J. Yuan, W.Z. Zhou, Synthesis and field-emission behavior of highly oriented boron carbonitride nanofibers, Appl. Phys. Lett. 2000, 76, 2624–2626.

DOI: 10.1063/1.126429

[14] X. Blase, J. -C. Charlier, A. DeVita, R. Car, Structural and electronic properties of composite BxCyNz nanotubes and heterojunctions, Appl. Phys. A. 68 (1999) 293-300.

[15] J. Rossato, R.J. Baierle, W. Orellana, Stability and electronic properties of vacancies and antisites in BC2N nanotubes, Phys. Rev. B. 75 (2007) 235401-235707.

DOI: 10.1103/physrevb.75.235401

[16] Y. Miyamoto, A. Rubio, M.L. Cohen, S.G. Louie, Chiral tubules of hexagonal BC2N, Phys. Rev. B. 50 (1994) 4976-4979.

[17] H. Pan, Y.P. Feng, J.Y. Lin, First-principles study of optical spectra of single-wall BC2N nanotubes, Phys. Rev. B. 73 (2006) 035420-034525.

[18] H. Pan, Y.P. Feng, J.Y. Lin, Ab initio study of single-wall BC2N nanotubes, Phys. Rev. B. 74 (2006) 045409.

[19] J. Pattanayak, T. Kar, S. Scheiner, Boron−Nitrogen (BN) Substitution Patterns in C/BN Hybrid Fullerenes:  C60-2x(BN)x (x = 1−7), J. Phys. Chem. A. 105 (2001) 8376-8384.

DOI: 10.1021/jp011391m

[20] A. A Peyghan, M. Noei, Hydrogen fluoride on the pristine, Al and Si doped BC 2 N nanotubes: a computational study, Computational Materials Science. 82 (2014) 197-(2001).

DOI: 10.1016/j.commatsci.2013.09.058

[21] A.A. Peyghan, N. Hadipour, Z. Bagheri, Effects of Al Doping and Double-Antisite Defect on the Adsorption of HCN on a BC2N Nanotube: Density Functional Theory Studies, J. Phys. Chem. C. 117 (2013) 2427-2432.

DOI: 10.1021/jp312503h

[22] A. Soltania, Z. Azmoodehc, M. Bezi Javand, E. Tazikeh Lemeskie, L. Karami, A DFT study of adsorption of glycine onto the surface of BC2N nanotube, Applied Surface Science, 384 (2016) 230-236.

DOI: 10.1016/j.apsusc.2016.04.162

[23] J. Beheshtian, A. Peyghan, Z. Bagheri, first-principles study of H2S adsorption and dissociation on the AlN nanotube, Phys. E. 44 (2012) 1963-(1968).

DOI: 10.1016/j.physe.2012.06.003

[24] S. Bhattachary, C. Majumder, G. P, Das, Hydrogen Storage in Ti-Decorated BC4N Nanotube, J. Phys. Chem. C. 112 (2008) 17487-17491.

DOI: 10.1021/jp807280w

[25] W. An, X. Wu, X.C. Zeng, Adsorption of O2, H2, CO, NH3, and NO2 on ZnO nanotube: a density functional theory study, J. Phys. Chem. C. 112 (2008) 5747-5755.

DOI: 10.1021/jp711105d

[26] J. Beheshtian, A. A Peyghan, Z. Bagheri, Detection of phosgene by Sc-doped BN nanotubes: a DFT study, Sens. Actuators B: Chem. 171 (2012) 846-852.

DOI: 10.1016/j.snb.2012.05.082

[27] J. Beheshtian, H. Soleymanabadi, M. Kamfiroozi, A. Ahmadi, The H2 dissociation on the BN, AlN, BP and AlP nanotubes: a comparative study, J. Mol. Model. 18 (2012) 2343-248.

DOI: 10.1007/s00894-011-1256-4

[28] F.P. Netzer, M.G. Ramsey, Structure and Orientation of Organic Molecules on Metal Surfaces, Crit. Rev. Solid State Mat. Sci. 17 (1992) 397-475.

[29] F. Solymosi, J. Kiss, Interaction of C2N2 with clean and oxygen dosed Cu(111) surface studied by AES, ELS and TDS measurements, Surf. Sci. 108 (1981) 368-380.

DOI: 10.1016/0039-6028(81)90456-8

[30] P.A. Stevens, R.J. Madix, J. Sto¨hr, The bonding of acetonitrile and CH2CN on Ag(110) determined by near edge x‐ray absorption fine structure: Evidence for π‐donor bonding and azimuthal ordering, J. Chem. Phys. 91 (1989) 4338-4345.

DOI: 10.1063/1.456814

[31] D.S. Corrigan, P. Gao, L.W.H. Leung, M. Weaver, Comparisons between surface infrared and surface-enhanced Raman spectroscopies: band frequencies, bandwidths, and selection rules for pseudohalide and related adsorbates at gold and silver electrodes, Langmuir. 2 (1986).

DOI: 10.1021/la00072a012

[32] F. Ample, J.M. Ricart, A. Clotet, D. Curulla, J.W. Niemantsverdriet, Competitive CN and N2 formation on Rh(1 1 1): a case of entropic stabilization, Chem. Phys. Lett. 385 (2004) 52-54.

DOI: 10.1016/j.cplett.2003.12.040

[33] J.M. Hu, Y. Li, J.Q. Li, Y.F. Zhang, K.N. Ding, Adsorption of CN on Cu(100) Surface Studied by Density Functional Theory, Acta Chim. Sin. 62 (2004) 1185-1190.

[34] M. Baei, A. A, Peyghan, M. Moghimi, Theoretical study of cyano radical adsorption on (6, 0) zigzag single-walled carbon nanotube, Monatsh Chem. 143 (2012) 1463-1470.

DOI: 10.1007/s00706-012-0739-z

[35] A. Soltani, A.V. Moradi, M. Bahari, A. Masoodi, S. Shojaee, Computational investigation of the electronic and structural propertie of CN radical on the pristine and Al-doped (6, 0) BN nanotues, Phsica B. 430 (201) 20-26.

DOI: 10.1016/j.physb.2013.07.032

[36] E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO, Version 3. 1. Gaussian Inc., Pittsburgh, PA, (1992).

[37] F. Biegler-Knig, J. Schnbohm, D. Bayles, AIM2000-A program to analyze and visualize atoms in molecules, J. Comput. Chem. 22 (2001) 545-559.

[38] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. omaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B. 05, Gaussian, Inc.: Pittsburgh, PA, (2003).

[39] S.F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Mol. Phys. 19 (1970) 553-566.

DOI: 10.1080/00268977000101561

[40] N. 'Boyle, A. Tenderholt, K. Langner, Cclib: a library for package-independent computational chemistry algorithms, J. Comput. Chem. 29 (2008) 839-845.

DOI: 10.1002/jcc.20823

[41] J. Tomasi, B. Mennucci, E. Cancès. The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level original, J Mol Struct. 464 (1999) 211-226.

DOI: 10.1016/s0166-1280(98)00553-3

Fetching data from Crossref.
This may take some time to load.