Mechanical Property of TiO2 Micro/Nano Surface Based on the Investigation of Residual Stress, Tensile Force and Fluid Flow Shear Stress: For Potential Application of Cardiovascular Devices

Abstract:

Article Preview

The micro-patterned TiO2 nanotube has been anticipated for potential application for cardiovascular implanted devices for its excellent drug loading/ release function and biocompatibility. However, its mechanical behavior has rarely been studied as the cardiovascular devices. The tube length is a crucial factor which not only decides the drug loading ability but also influences the devices’ mechanical behavior. Therefore, in this work, the micro-patterned TiO2 nanotubes with different tube length (MNT2, MNT4 and MNT6) were fabricated, and their surface energy, residual stress, tensile tolerability and blood flow shear stress tolerability were determined, respectively. The results showed that the microstructure reduced the surface energy of the nanotubes surfaces, enhanced or reduced surface tensile tolerability when parallel or vertical to the strain orientation, and also increased the nanotubes surfaces residual stress; In addition, both micro/nano and single nano surfaces possessed good blood flow shear stress tolerability. These results indicated that the micro/nano surfaces possesses excellent mechanical properties for surface modification of cardiovascular devices.

Info:

Periodical:

Pages:

190-201

Citation:

C. Z. Han et al., "Mechanical Property of TiO2 Micro/Nano Surface Based on the Investigation of Residual Stress, Tensile Force and Fluid Flow Shear Stress: For Potential Application of Cardiovascular Devices", Journal of Nano Research, Vol. 49, pp. 190-201, 2017

Online since:

September 2017

Export:

Price:

$38.00

* - Corresponding Author

[1] C. Richter, C.A. Schmuttenmaer, Exciton-like trap states limit electron mobility in TiO2 nanotubes, Nature Nanotechnology 5 (2010) 769–772.

DOI: https://doi.org/10.1038/nnano.2010.196

[2] N. Liu, C. Schneider, D. Freitag, M. Hartmann, U. Venkatesan, J. Müller, E. Spiecker, P. Schmuki, Black TiO2 Nanotubes: Cocatalyst-Free Open-Circuit Hydrogen Generation, Nano Letters 14 (2014) 3309–3313.

DOI: https://doi.org/10.1021/nl500710j

[3] H.R. Li, Q. Cui, B. Feng, J.X. Wang, X. Lu, J. Weng, Antibacterial activity of TiO2 nanotubes: Influence of crystal phase, morphology and Ag deposition, Applied Surface Science 284 (2013) 179-183.

DOI: https://doi.org/10.1016/j.apsusc.2013.07.076

[4] A. Gao, R.Q. Hang, X.B. Huang, L.Z. Zhao, X.Y. Zhang, L. Wang, B. Tang, S.L. Ma, P.K. Chu, The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts, Biomaterials 35 (2014) 4223-4235.

[5] L.W. Lv, Y.S. Liu, P. Zhang, X. Zhang, J.Z. Liu, T. Chen, P.L. Su, H.Y. Li, Y.S. Zhou, The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation, Biomaterials 39 (2015).

DOI: https://doi.org/10.1016/j.biomaterials.2014.11.002

[6] L. Peng, M.L. Eltgroth, T.J. LaTempa, C.A. Grimes, T.A. Desai, The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation, Biomaterials 30 (2009) 1268-1272.

DOI: https://doi.org/10.1016/j.biomaterials.2008.11.012

[7] L. Peng, A.J. Barczak, R.A. Barbeau, Y.Y. Xiao, T.J. LaTempa, C.A. Grimes, T.A. Desai, Whole Genome Expression Analysis Reveals Differential Effects of TiO2 Nanotubes on Vascular Cells, Nano Letters 10 (2010) 143–148.

DOI: https://doi.org/10.1021/nl903043z

[8] A. Pittrof, J. Park, S. Bauer, P. Schmuki, ECM spreading behaviour on micropatterned TiO2 nanotube surfaces, Acta Biomaterialia 8 (2012) 2639-2647.

DOI: https://doi.org/10.1016/j.actbio.2012.03.040

[9] W.Q. Yu, C. Qian, X.Q. Jiang, F.Q. Zhang and W.M. Weng, Mechanisms of stem cell osteogenic differentiation on TiO2 nanotubes, Colloids and Surfaces B: Biointerfaces 136 (2015) 779-785.

DOI: https://doi.org/10.1016/j.colsurfb.2015.10.019

[10] M. Lai, K.Y. Cai, L. Zhao, X.Y. Chen, Y.H. Hou, Z.X. Yang, Surface Functionalization of TiO2 Nanotubes with Bone Morphogenetic Protein 2 and Its Synergistic Effect on the Differentiation of Mesenchymal Stem Cells, Biomacromolecules 12 (2011).

DOI: https://doi.org/10.1021/bm1014365

[11] A.H. Liu, Towards development of chemosensors and biosensors with metal-oxide-based nanowires or nanotubes, Biosensors and Bioelectronics 24 (2008) 167-177.

DOI: https://doi.org/10.1016/j.bios.2008.04.014

[12] B. Barrocas, C.D. Nunes, M.L. Carvalho, O.C. Monteiro, Titanate nanotubes sensitized with silver nanoparticles: Synthesis, characterization and in-situ pollutants photodegradation, Applied Surface Science 385 (2016) 18-27.

DOI: https://doi.org/10.1016/j.apsusc.2016.05.080

[13] T.T. Yang, S. Qian, Y.Q. Qiao, X.Y. Liu, Cytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticles, Colloids and Surfaces B: Biointerfaces 145 (2016) 597-606.

DOI: https://doi.org/10.1016/j.colsurfb.2016.05.073

[14] C. Ratanatawanate, A. Bui, K. Vu, K.J.B. Jr, Low-Temperature Synthesis of Copper(II) Sulfide Quantum Dot Decorated TiO2 Nanotubes and Their Photocatalytic Properties, Journal of Physical Chemistry C 115 (2011) 6175–6180.

DOI: https://doi.org/10.1021/jp109716q

[15] L. Peng, A.D. Mendelsohn, T.J. LaTempa, S. Yoriya, C.A. Grimes, T.A. Desai, Long-Term Small Molecule and Protein Elution from TiO2 Nanotubes, Nano Letters 9 (2009) 1932–(1936).

DOI: https://doi.org/10.1021/nl9001052

[16] H.A.M. Faria, A.A.A. Queiroz, A novel drug delivery of 5-fluorouracil device based on TiO2/ZnS nanotubes, Materials Science and Engineering: C 56 (2015) 260-268.

[17] C.C. Torres, C.H. Campos, C. Diáz, V.A. Jiménez, F. Vidal, L. Guzmán, J.B. Alderete, PAMAM-grafted TiO2 nanotubes as novel versatile materials for drug delivery applications, Materials Science and Engineering: C 65 (2016) 164-171.

DOI: https://doi.org/10.1016/j.msec.2016.03.104

[18] C.L. Xie, P. Li, Y. Liu, F. Luo, X.F. Xiao, Preparation of TiO2 nanotubes/mesoporous calcium silicate composites with controllable drug release, Materials Science and Engineering: C 67 (2016) 433-439.

DOI: https://doi.org/10.1016/j.msec.2016.05.041

[19] F.Y. Shen, Y. Zhu, X. Li, R.F. Luo, Q.F. Tu, J. Wang, N. Huang, Vascular cell responses to ECM produced by smooth muscle cells on TiO2 nanotubes, Applied Surface Science 349 (2015) 589-598.

DOI: https://doi.org/10.1016/j.apsusc.2015.05.042

[20] S. Zhong, R.F. Luo, X. Wang, L.L. Tang, J. Wu, J. Wang, R.B. Huang, H. Sun, N. Huang, Effects of polydopamine functionalized titanium dioxide nanotubes on endothelial cell and smooth muscle cell, Colloids and Surfaces B: Biointerfaces 116 (2014).

DOI: https://doi.org/10.1016/j.colsurfb.2014.01.030

[21] J.J. Wu, J.A. Li, F. Wu, Z.K. He, P. Yang, N. Huang, Effect of micropatterned TiO2 nanotubes thin film on the deposition of endothelial extracellular matrix: For the purpose of enhancing surface biocompatibility, Biointerphases 10 (2015) 04A302.

DOI: https://doi.org/10.1116/1.4928304

[22] L.J. Xiang, J.A. Li, Z.K. He, J.J. Wu, P. Yang, N. Huang, Design and construction of TiO2 nanotubes in microarray using two-step anodic oxidation for application of cardiovascular implanted devices, Micro & Nano Letters 10 (2015) 287-291.

DOI: https://doi.org/10.1049/mnl.2015.0044

[23] J.A. Li, W. Qin, K. Zhang, F. Wu, P. Yang, Z.K. He, A.S. Zhao, N. Huang, Controlling mesenchymal stem cells differentiate into contractile smooth muscle cells on a TiO2 micro/nano interface: Towards benign pericytes environment for endothelialization, Colloids and Surfaces B: Biointerfaces 145 (2016).

DOI: https://doi.org/10.1016/j.colsurfb.2016.05.024

[24] J.A. Li, K. Zhang, P. Yang, L.L. Wu, J.L. Chen, A.S. Zhao, G.C. Li, N. Huang, Research of smooth muscle cells response to fluid flow shear stress by hyaluronic acid micro-pattern on a titanium surface, Experimental Cell Research 319 (2013).

DOI: https://doi.org/10.1016/j.yexcr.2013.05.027

[25] M. Guo, Z.W. Chu, J. Yao, W.T. Feng, Y.X. Wang, L.Z. Wang, Y.B. Fan, The effects of tensile stress on degradation of biodegradable PLGA membranes: A quantitative study, Polymer Degradation and Stability 124 (2016) 95-100.

DOI: https://doi.org/10.1016/j.polymdegradstab.2015.12.019

[26] A. Schiavone, L.G. Zhao, A computational study of stent performance by considering vessel anisotropy and residual stresses, Materials Science and Engineering: C 62 (2016) 307-316.

DOI: https://doi.org/10.1016/j.msec.2016.01.064

[27] K. Kiani, Nanofluidic flow-induced longitudinal and transverse vibrations of inclined stocky single-walled carbon nanotubes, Computer Methods in Applied Mechanics and Engineering 276 (2014) 691-723.

DOI: https://doi.org/10.1016/j.cma.2014.03.008

[28] C.F. Borgognoni, M. Mormann, Y. Qu, M. Schäfer, K. Langer, C. Öztürk, S. Wagner, C.Y. Chen, Y.L. Zhao, H. Fuchs, K. Riehemann, Reaction of human macrophages on protein corona covered TiO2 nanoparticles, Nanomedicine: Nanotechnology, Biology and Medicine 11 (2015).

DOI: https://doi.org/10.1016/j.nano.2014.10.001

[29] P. Neacsu, A. Mazare, A. Cimpean, J. Park, M. Costache, P. Schmuki, I. Demetrescu, Reduced inflammatory activity of RAW 264. 7 macrophages on titania nanotube modified Ti surface, The International Journal of Biochemistry & Cell Biology 55 (2014).

DOI: https://doi.org/10.1016/j.biocel.2014.09.006

[30] A. Shivaram, S. Bose, A. Bandyopadhyay, Mechanical degradation of TiO2 nanotubes with and without nanoparticulate silver coating, Journal of the Mechanical Behavior of Biomedical Materials 59 (2016) 508-518.

DOI: https://doi.org/10.1016/j.jmbbm.2016.02.028

[31] Y.L. Chen, J.Y. Jia, H.Z. Fu, Z. Zeng, Analysis of the BGA solder Sn–3. 0Ag–0. 5Cu crack interface and a prediction of the fatigue life under tensile stress, International Journal of Fatigue 87 (2016) 216-224.

DOI: https://doi.org/10.1016/j.ijfatigue.2016.02.003

[32] I.A. Alhomoudi and G. Newaz, Residual stresses, Raman shift relation in anatase TiO2 thin film, Thin Solid Films 517 (2009) 4372-4378.

DOI: https://doi.org/10.1016/j.tsf.2009.02.141

[33] L.H. Shi, H. Xu, X.M. Liao, G.F. Yin, Y.D. Yao, Z.B. Huang, X.C. Chen, X.M. Pu, Fabrication of two-layer nanotubes with the pear-like structure by an in-situ voltage up anodization and the application as a drug delivery platform, Journal of Alloys and Compounds 647 (2015).

DOI: https://doi.org/10.1016/j.jallcom.2015.06.015

[34] W.H. Yang, C.H. Deng, P. Liu, Y. Hu, Z. Luo, K.Y. Cai, Sustained release of aspirin and vitamin C from titanium nanotubes: An experimental and stimulation study, Materials Science and Engineering: C 64 (2016) 139-147.

DOI: https://doi.org/10.1016/j.msec.2016.03.055

[35] J.A. Li, K. Zhang, J.J. Wu, L.J. Zhang, P. Yang, Q.F. Tu, N. Huang, Tailoring of the titanium surface by preparing cardiovascular endothelial extracellular matrix layer on the hyaluronic acid micro-pattern for improving biocompatibility, Colloids and Surfaces B: Biointerfaces 128 (2015).

DOI: https://doi.org/10.1016/j.colsurfb.2015.01.010

[36] L.H. Li, Y. Xu, Z. Zhou, J. Chen, P. Yang, Y.H. Yang, J.A. Li, N. Huang, The effects of Cu-doped TiO2 thin films on hyperplasia, inflammation and bacteria infection, Applied Sciences-Basel 5 (2015) 1016-1032.

DOI: https://doi.org/10.3390/app5041016

[37] J.A. Li, K. Zhang, F. Wu, Z.K. He, P. Yang, N. Huang, Constructing bio-functional layers of hyaluronan and type IV collagen on titanium surface for improving endothelialization, Journal of Materials Science 50 (2015) 3226-3236.

DOI: https://doi.org/10.1007/s10853-015-8889-0

[38] J.P. Zou, R.Z. Wang, Debonding phenomenon of TiO2 nanotube film, Trans. Nonferrous Met. Soc. China 22 (2012) 2691−2699.

DOI: https://doi.org/10.1016/s1003-6326(11)61519-7

[39] H.D. Espinosa, T. Filleter, M. Naraghi, Multiscale Experimental Mechanics of Hierarchical Carbon-Based Materials, Advanced Materials 24 (2012) 2805–2823.

DOI: https://doi.org/10.1002/adma.201104850

[40] J.P. Zou, R.Z. Wang, Crack initiation, propagation and saturation of TiO2 nanotube film, Trans. Nonferrous Met. Soc. China 22 (2012) 627−633.

DOI: https://doi.org/10.1016/s1003-6326(11)61224-7

[41] J.A. Li, G.C. Li, K. Zhang, Y.Z. Liao, P. Yang, M.F. Maitz, N. Huang, Co-culture of vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface. Applied surface science 273 (2013)24-31.

DOI: https://doi.org/10.1016/j.apsusc.2013.01.058

[42] H. Kafa, J.T.W. Wang, N. Rubio, R. Klippstein, P.M. Costa, H.A.F.M. Hassan, J.K. Sosabowski, S.S. Bansal, J.E. Preston, N.J. Abbott, K.T. Al-Jamal, Translocation of LRP1 targeted carbon nanotubes of different diameters across the blood–brain barrier in vitro and in vivo, Journal of Controlled Release 225 (2016).

DOI: https://doi.org/10.1016/j.jconrel.2016.01.031

[43] N. Sano, K. Nojima, T. Kodama, H. Tamon, Diameter-control in synthesis of carbon nanotubes inside porous stainless steel block and application to glucose fuel cell electrode, Carbon 103 (2016) 151-156.

DOI: https://doi.org/10.1016/j.carbon.2016.02.071

[44] Z. Zhou, J. Chen, L.J. Xiang, Y. Xu, P. Yang, J.A. Li, J.J. Wu, N. Huang, Fabrication of 3D TiO2 micromesh on Silicon surface and its effects on platelet adhesion, Materials Letters 132 (2014) 149-152.

DOI: https://doi.org/10.1016/j.matlet.2014.06.091

[45] J.A. Li, P. Yang, K. Zhang, H.L. Ren, N. Huang, Preparation of SiO2/TiO2 and TiO2/TiO2 micropattern and their effects on platelet adhesion and endothelial cell regulation, Nuclear Instruments and Methods in Physics Research B 307 (2013) 575-579.

DOI: https://doi.org/10.1016/j.nimb.2012.11.055