Rod-Like Rutile Nanoparticles: Synthesis, Structure and Morphology

Abstract:

Article Preview

Nanodispersed rutile with rod-like particles is synthesized by hydrolysis of TiCl4 in hydrochloric acid - ethanol alcohol aqueous solution. It is found that the specific surface area, crystallite size and degree of agglomeration are determined by molar ratio of ethanol in reaction medium. According to HR-TEM images and XRD data rutile crystallites are preferred oriented along the [001] axis. The analysis of the Raman spectra for samples with different morphology is performed. The model of rutile nanorods nucleation and growth is proposed.

Info:

Periodical:

Pages:

32-40

Citation:

V. Kotsyubynsky et al., "Rod-Like Rutile Nanoparticles: Synthesis, Structure and Morphology", Journal of Nano Research, Vol. 50, pp. 32-40, 2017

Online since:

November 2017

Export:

Price:

$41.00

* - Corresponding Author

[1] R. Daghrir, D. Patrick, R. Didier, Modified TiO2 for environmental photocatalytic applications: a review, Ind. Eng. Chem. Res. 52 (2013) 3581-3599.

DOI: https://doi.org/10.1021/ie303468t

[2] J. W. Liou, H. H. Chang, Bactericidal effects and mechanisms of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria, Arch. Immunol. Ther. Exp. 60 (2012) 267-275.

DOI: https://doi.org/10.1007/s00005-012-0178-x

[3] Y. Zhu, J. Shi, Z. Zhang, C. Zhang, X. Zhang, Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide, Anal. Chem. 74 (2002) 120-124.

DOI: https://doi.org/10.1021/ac010450p

[4] M. R. Narayan,  Dye sensitized solar cells based on natural photosensitizers, Renewable And Sustainable Energy Rev. 16 (2012) 208-215.

DOI: https://doi.org/10.1016/j.rser.2011.07.148

[5] A. Stashans, S. Lunell, R. Bergström, A. Hagfeldt, S. E. Lindquist, Theoretical study of lithium intercalation in rutile and anatase, Phys. Rev. B 53 (1996) 159-170.

DOI: https://doi.org/10.1103/physrevb.53.159

[6] S. M. Gupta, M. Tripathi, A review of TiO2 nanoparticles, Chin. Sci. Bull. 56 (2011) 1639-1657.

[7] X. Chen, C. Li, M. Grätzel, R. Kostecki, S.S. Mao, Nanomaterials for renewable energy production and storage, Chem. Soc. Rev., 41 (2012) 7909-7937.

DOI: https://doi.org/10.1039/c2cs35230c

[8] D. Reyes-Coronado, G. Rodriguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. de Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile, Nanotech. 19 (2008) 145605-145615.

DOI: https://doi.org/10.1088/0957-4484/19/14/145605

[9] D. P. Macwan, N. D. Pragnesh, C. Shalini, A review on nano-TiO2 sol–gel type syntheses and its applications, J. Mater. Sci. 46 (2011) 3669-3686.

DOI: https://doi.org/10.1007/s10853-011-5378-y

[10] L. Lutterotti, Maud: a Rietveld analysis program designed for the internet and experiment integratio, Acta Crystallogr., Sect. A: Found. Crystallogr. 56 (2000) S54.

DOI: https://doi.org/10.1107/s0108767300021954

[11] C. J. Howard, T. M. Sabine, F. Dickson, Structural and thermal parameters for rutile and anatase, Acta Crystallogr., Sect. B: Struct. Sci., 47 (1991) 462-468.

DOI: https://doi.org/10.1107/s010876819100335x

[12] N. C. Popa, D. Balzar, Size-broadening anisotropy in whole powder pattern fitting. Application to zinc oxide and interpretation of the apparent crystallites in terms of physical models, J. Appl. Crystallogr. 43 (2008) 615-627.

DOI: https://doi.org/10.1107/s0021889808012223

[13] H. Yin, Y. Wada, T. Kitamura, T. Sumida, Y. Hasegawa, S. Yanagida, Novel synthesis of phase-pure nano-particulate anatase and rutile TiO2 using TiCl4 aqueous solutions, J. Mater. Chem. 12 (2002) 378-383.

DOI: https://doi.org/10.1039/b105637a

[14] F. Menges, Spekwin32 – optical spectroscopy software, version 1. 71. 5. 1, 2012, http: /www. efemm2. de/spekwin.

[15] A. Y. Kuznetsov, R. Machado, L. S. Gomes, C. A. Achete, V. Swamy, B. C. Muddle, V. Prakapenka, Size dependence of rutile TiO2 lattice parameters determined via simultaneous size, strain, and shape modeling, Appl. Phys. Lett. 94 (2009).

DOI: https://doi.org/10.1063/1.3139078

[16] H. Kaper, F. Endres, I. Djerdj, M. Antonietti, B. M. Smarsly, J. Maier, Y. S. Hu, Direct Low‐Temperature Synthesis of Rutile Nanostructures in Ionic Liquids, Small 3 (2007) 1753-1763.

DOI: https://doi.org/10.1002/smll.200700138

[17] A. S. Barnard, P. Zapol, Effects of particle morphology and surface hydrogenation on the phase stability of TiO2, Phys. Rev. B 70 (2004) 235403-1–235403-13.

[18] F. Pedraza, A. Vazquez, Obtention of TiO2 rutile at room temperature through direct Oxidation of TiCl3, J. Phys. Chem. Solids. 60 (1999) 445-448.

DOI: https://doi.org/10.1016/s0022-3697(98)00315-1

[19] P. M. Kumar, S. Badrinarayanan, M. Sastry, Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states, Thin Solid Films 358 (2000) 122-130.

DOI: https://doi.org/10.1016/s0040-6090(99)00722-1

[20] M. Crisan, A. Jitianu, D. Crisan, M. Balasoiu, N. Dragan, M. Zaharescu, Sol-gel monocomponent nano-sized oxide powders, J. Optoelectron. Adv. Mater. 2 (2000) 339-344.

[21] T. Lopez, J. A. Moreno, R. Gomez, X. Bokhimi, J. A. Wang, H. Yee-Madeira, P. Reyes, Characterization of iron-doped titania sol–gel materials, J. Mater. Chem. 12 (2002) 714-718.

DOI: https://doi.org/10.1039/b105724n

[22] H. Y. Chuang, D. H. Chen Fabrication and photocatalytic activities in visible and UV light regions of Ag-TiO2 and NiAg-TiO2 nanoparticles, Nanotech., 20, (2009) 105704-1–105704-10.

DOI: https://doi.org/10.1088/0957-4484/20/10/105704

[23] H. L. Ma, J. Y. Yang, Y. Dai, Y. B. Zhang, B. Lu, G. H. Ma, Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser, Appl. Surf. Sci. 253 (2007) 7497-7500.

DOI: https://doi.org/10.1016/j.apsusc.2007.03.047

[24] T. Mazza, E. Barborini, P. Piseri, P. Milani, D. Cattaneo, A. L. Bassi, C. Ducati, Raman spectroscopy characterization of TiO2 rutile nanocrystal, Phys. Rev. B 75 (2007) 045416-1–045416-5.

DOI: https://doi.org/10.1103/physrevb.75.045416

[25] V. Swamy, Size-dependent modifications of the first-order Raman spectra of nanostructured rutile TiO2, Phys. Rev. B 77 (2008) 195414-1–195414-4.

DOI: https://doi.org/10.1103/physrevb.77.195414

[26] J. C. Parker, R. W. Siegel, Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2, Appl. Phys. Lett. 57 (1990) 943-945.

DOI: https://doi.org/10.1063/1.104274

[27] S. G. Kumar, K. Rao, Polymorphic phase transition among the titania crystal structures using a solution-based approach: from precursor chemistry to nucleation process, Nanoscale 6 (2014) 11574-11632.

DOI: https://doi.org/10.1039/c4nr01657b

[28] V. O. Kotsyubynsky, I. F. Myronyuk, L. I. Myronyuk, V. L. Chelyadyn, M. H. Mizilevska, A. B. Hrubiak, O. K. Tadeush, F. M. Nizamutdinov, The effect of pH on the nucleation of titania by hydrolysis of TiCl4, Materialwiss. Werkstofftech. 1 (2016).

DOI: https://doi.org/10.1002/mawe.201600491

[29] H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, S. Yanagida, Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2, J. Mater. Chem. 11 (2001) 1694-1703.

DOI: https://doi.org/10.1039/b008974p

[30] F. Xu, Y. Wu, X. Zhang, Z. Gao, K. Jiang, Controllable synthesis of rutile TiO2 nanorod array, nanoflowers and microspheres directly on fluorine-doped tin oxide for dye-sensitised solar cells, Micro Nano Lett. 7 (2012) 826-830.

DOI: https://doi.org/10.1049/mnl.2012.0398

[31] Y. Wang, L. Zhang, K. Deng, X. Chen, Z. Zou, Low temperature synthesis and photocatalytic activity of rutile TiO2 nanorod superstructures, J. Phys. Chem. 111 (2007) 2709-2714.