Effect of Thermal Dependency of Diameter on Density of States for Zigzag Carbon Nano-Tubes

Abstract:

Article Preview

Gaining control over the various parameters of carbon nanotubes-(CNTs) has always been a challenge for researchers. This is because, each parameter depends on a carbon nanotube's dimensions in addition to its structure and composition. This paper aims to investigate how the thermal dependency of structural parameters -like diameter- affects the density of states (DOS). To accomplish this, the study first reviews the basic theoretical aspects of CNTs, we then present calculations of the energy band structures for armchair carbon nanotubes-(aCNTs), zigzag carbon nanotubes-(zCNTs), and chiral carbon nanotubes-(cCNTs). Finally, the study derives the DOSs to help provide an understanding of the relationship between the radial expansion of the diameter and the DOS for typical zCNTs.

Info:

Periodical:

Pages:

1-10

Citation:

H. N. Ahmadabadi et al., "Effect of Thermal Dependency of Diameter on Density of States for Zigzag Carbon Nano-Tubes", Journal of Nano Research, Vol. 55, pp. 1-10, 2018

Online since:

November 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] S. H. Ghaderi and E. Hajiesmaili, Molecular structural mechanics applied to coiled carbon nanotubes, Comput. Mater. Sci. 55 (2012) 344–349.

DOI: https://doi.org/10.1016/j.commatsci.2011.11.016

[2] M. Burghard, Electronic and vibrational properties of chemically modified single-wall carbon nanotubes, Surf. Sci. Rep. 58 (2005) 1-109.

[3] Y. V. Shtogun and L. M. Woods, Mechanical properties of defective single wall carbon nanotubes, J. Appl. Phys. 107 (2010) 061803.

DOI: https://doi.org/10.1063/1.3340519

[4] M. Monthioux et al., Introduction to carbon nanotubes, in Springer handbook of nanotechnology (2007) 43–112.

[5] X. Zhang, Interfacial Mechanical Behaviors in Carbon Nanotube Assemblies, ArXiv Prepr. ArXiv1 (2017) 70508697.

[6] M. P. Anantram and F. Leonard, Physics of carbon nanotube electronic devices, Rep. Prog. Phys. 69 (2006) 507.

[7] M. Bhattacharya, Polymer nanocomposites—A comparison between carbon nanotubes, graphene, and clay as nanofillers, Materials. 9 (2016) 262.

DOI: https://doi.org/10.3390/ma9040262

[8] S. Sreekala, X.-H. Peng, P. M. Ajayan, and S. K. Nayak, Effect of strain on the band gap and effective mass of zigzag single-wall carbon nanotubes: First-principles density-functional calculations, Phys. Rev. B. 77 (2008) 155434.

DOI: https://doi.org/10.1103/physrevb.77.155434

[9] Y.-K. Kwon, S. Saito, and D. Tománek, Effect of intertube coupling on the electronic structure of carbon nanotube ropes, Phys. Rev. B. 58 (1998) R13314.

DOI: https://doi.org/10.1103/physrevb.58.r13314

[10] X. Lin et al., Intrinsic current-voltage properties of nanowires with four-probe scanning tunneling microscopy: A conductance transition of ZnO nanowire, Appl. Phys. Lett. 89 (2006) 043103.

DOI: https://doi.org/10.1063/1.2234293

[11] A. Maiti, A. Svizhenko, and M. P. Anantram, Electronic transport through carbon nanotubes: Effects of structural deformation and tube chirality, Phys. Rev. Lett. 88 (2002) 126805.

DOI: https://doi.org/10.1103/physrevlett.88.126805

[12] R. Nizam, S. Mahdi, A. Rizvi, and A. Azam, Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap 1 (2011).

[13] S. Sakurai, M. Inaguma, D. N. Futaba, M. Yumura, and K. Hata, A fundamental limitation of small diameter single-walled carbon nanotube synthesis—a scaling rule of the carbon nanotube yield with catalyst volume, Materials. 6 (2013) 2633–2641.

DOI: https://doi.org/10.3390/ma6072633

[14] C. Laurent, E. Flahaut, and A. Peigney, The weight and density of carbon nanotubes versus the number of walls and diameter, Carbon. 48 (2010) 2994–2996.

DOI: https://doi.org/10.1016/j.carbon.2010.04.010

[15] C. W. To, Bending and shear moduli of single-walled carbon nanotubes, Finite Elem. Anal. Des. 42 (2006) 404–413.

[16] K. I. Tserpes and P. Papanikos, Finite element modeling of single-walled carbon nanotubes, Compos. Part B Eng. 36 (2005) 468–477.

DOI: https://doi.org/10.1016/j.compositesb.2004.10.003

[17] C. Li and T.-W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids Struct. 40 (2003) 2487–2499.

[18] M. Dvorak, W. Oswald, and Z. Wu, Bandgap opening by patterning graphene, Sci. Rep. 3 (2013).

[19] E. Ridolfi, D. Le, T. S. Rahman, E. R. Mucciolo, and C. H. Lewenkopf, A tight-binding model for MoS2 monolayers, J. Phys. Condens. Matter. 27 (2015) 365501.

[20] G. A. Jamal and S. M. Mominuzzaman, Limitations of Tight Binding Model in Describing Electronic Properties of Single Wall Carbon Nanotubes, J. Nanosci. Nanoeng. 1 (2015) 96–106.

[21] H.-S. P. Wong and D. Akinwande, Carbon nanotube and graphene device physics. Cambridge University Press (2011).

[22] D. Akinwande, S. Yasuda, B. Paul, S. Fujita, G. Close, and H.-S. P. Wong, Monolithic integration of CMOS VLSI and carbon nanotubes for hybrid nanotechnology applications, IEEE Trans. Nanotechnol.7 (2008) 636–639.

DOI: https://doi.org/10.1109/tnano.2008.2003438

[23] N. N. Nam and M. Koshino, Lattice relaxation and energy band modulation in twisted bilayer graphenes, ArXiv Prepr. ArXiv170603908 (2017).

[24] A. Favata and P. Podio-Guidugli, A shell theory for chiral single-wall carbon nanotubes, Eur. J. Mech.-ASolids. 45 (2014) 198–210.

DOI: https://doi.org/10.1016/j.euromechsol.2013.12.007

[25] R. D. Mansano and A. P. Mousinho, Electro-optical properties of carbon nanotubes obtained by high density plasma chemical vapor deposition, Mater. Sci. Appl. 2 (2011) 381.

DOI: https://doi.org/10.4236/msa.2011.25049

[26] M. Machón, S. Reich, and C. Thomsen, Electron–phonon coupling in carbon nanotubes, Phys. Status Solidi B. 243 (2006) 3166–3170.

DOI: https://doi.org/10.1002/pssb.200669149

[27] J. F. A. Rida, A. K. Bhardwaj, and A. K. Jaswal, Preparing Carbon Nanotubes (CNTs) for Optical System Applications, Int. J. Nanotub. Appl. IJNA. 3 (2013) 1–20.

[28] G. G. Samsonidze et al., The concept of cutting lines in carbon nanotube science," J. Nanosci. Nanotechnol. 3 (2003) 431–458.

[29] J.-C. Charlier, X. Blase, and S. Roche, Electronic and transport properties of nanotubes, Rev. Mod. Phys. 79 (2007) 677.

[30] J. W. Mintmire and C. T. White, Universal density of states for carbon nanotubes, Phys. Rev. Lett. 81 (1998) 2506.

DOI: https://doi.org/10.1103/physrevlett.81.2506

[31] H. Jiang, B. Liu, and Y. Huang, Thermal Expansion of Singled Walled Carbon Nanotubes, Engineering Material and Technology. 126 (2004) 265.

[32] X. Wenkai, L. Xujun, M. Pengfei, Z. Xian, F. Taotao, and L. Xiaotuo, Structure factors of carbon nanotubes on the thermal conductivity of carbon nanotube/epoxy composites, AIP ADVANCES. 8 (2018) 035107.

DOI: https://doi.org/10.1063/1.5017784

[33] S. Syahril, O. Sri and S. Yoshifumi, A Theoretical Model of Laser Heating Carbon Nanotubes, Nanomaterials. 8 (2018) 580.