Effect of Center Crack on Mechanical Properties of Graphene

Abstract:

Article Preview

Graphene is a thin sheet with special properties and complicated mechanical behavior. It’s important to study graphene experimentally and theoretically. Stone–Wales defects, cracks and atom vacancy are popular defects in carbon allotropes especially in graphene. In this paper, effect of center cracks on graphene was discussed. At first, mechanical properties of non-defected graphene sheet was obtained using molecular dynamics simulation. Comparing result with theoretical and experimental studies showing good agreements and proofing the results. Then, 8 different cracks were considered in center of graphene sheets. Stress-strain curves of defected graphene sheets with different tension strain rates were plotted. The results showed that increasing crack length lead to decreasing Young’s modulus of graphene from 870GPa to 670GPa. Also, fracture occurred in less tensile strain. In the following, structural molecular mechanics method was used to simulate cracked graphene sheets. The results showed good agreement between two methods.

Info:

Periodical:

Pages:

22-31

Citation:

M. Motamedi and A. Esfandiarpour, "Effect of Center Crack on Mechanical Properties of Graphene", Journal of Nano Research, Vol. 55, pp. 22-31, 2018

Online since:

November 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett. 8(3) (2008) 902-907.

DOI: https://doi.org/10.1021/nl0731872

[2] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide:synthesis, properties, and applications, Adv. Mater. 22(35) (2010) 3906-3924.

DOI: https://doi.org/10.1002/adma.201001068

[3] Y. Y. Zhang, Q. X. Pei, and C. M. Wang, Mechanical properties of graphenes under tension: A molecular dynamics study, Appl. Phys. Lett. 101 (2012) 081909.

DOI: https://doi.org/10.1063/1.4747719

[4] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385–388.

DOI: https://doi.org/10.1126/science.1157996

[5] Nardelli, B. I. Yakobson, J. Bernholc, Mechanism of strain release in carbon nanotubes. Phys Rev B. 57 (1998) 4277–80.

[6] Q. Zhao, M. B Nardelli, J. Bernholc, Ultimate strength of carbon nanotubes: a theoretical study. Phys Rev B.65 (2002) 144105.

DOI: https://doi.org/10.1103/physrevb.65.144105

[7] M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund, K. Kaski. Mechanical properties of carbon nanotubes with vacancies and related defects. Phys Rev B. 70 (2004) 245416.

DOI: https://doi.org/10.1103/physrevb.71.169906

[8] F. Banhart, J. Kotakoski, A. Krasheninnikov. Structural defects in graphene. ACS Nano. 5(1) (2010) 26–41.

DOI: https://doi.org/10.1021/nn102598m

[9] T. W. Ebbese, T. Takada. Topological and SP3 defect structures in nanotubes. Carbon 33 (1995) 973–8.

[10] A. Omeltchenko, J. Yu. Crack Front Propagation and Fracture in a Graphite Sheet: A Molecular-Dynamics Study on Parallel Computers. Physical Review Letters 78 (1997) 2148.

DOI: https://doi.org/10.1103/physrevlett.78.2148

[11] M. Lea, R.C. Batra, Single-edge crack growth in graphene sheets under tension, Computational Materials Science 69 (2013) 381–388.

DOI: https://doi.org/10.1016/j.commatsci.2012.11.057

[12] C. Baykasoglu, A. Mugan, Nonlinear fracture analysis of single-layer graphene sheets, Engineering Fracture Mechanics 96 (2012) 241–250.

DOI: https://doi.org/10.1016/j.engfracmech.2012.08.010

[13] T. C. Theodosiou, D. A. Saravanous, Numerical simulation of graphene fracture using molecular mechanics based nonlinear finite elements, Computational Materials Science 82 (2014) 56–65.

DOI: https://doi.org/10.1016/j.commatsci.2013.09.032

[14] K. Tuleubekov, K.Y. Volokh, H. Stolarski, S.G. Mogilevskaya, Strength of graphene in biaxial tension, European Journal of Mechanics A/Solids 39 (2013) 291-297.

DOI: https://doi.org/10.1016/j.euromechsol.2012.12.006

[15] M.C. Wang, C. Yan, L. Ma, N. Hu, M.W. Chen, Effect of defects on fracture strength of graphene sheets, Computational Materials Science 54 (2012) 236–239.

DOI: https://doi.org/10.1016/j.commatsci.2011.10.032

[16] T. Jia-Lin, T. Shi-Hua, T. Yu-Jen, Characterizing the fracture parameters of a graphene sheet using atomistic simulation and continuum mechanics, International Journal of Solids and Structures 47 (2010) 503–509.

DOI: https://doi.org/10.1016/j.ijsolstr.2009.10.017

[17] S. J. Stuart, A. B. Tutein, J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112 (2000) 6472-6486.

DOI: https://doi.org/10.1063/1.481208

[18] H. Zhao, K. Min, and N. R. Aluru, Size and Chirality Dependent Elastic Properties of Graphene Nanoribbons under Uniaxial Tension, Nano Lett. 9(8) (2009) 3012-3015.

DOI: https://doi.org/10.1021/nl901448z

[19] O. A. Shenderova, D. W. Brenner,, A. Omeltchenko, X. Su, L. H. Yang, Atomistic modeling of the fracture of polycrystalline diamond, Phys. B. 61 (6) (2000) 3877–3888.

DOI: https://doi.org/10.1103/physrevb.61.3877

[20] R. Daniel Cooper, Experimental Review of Graphene, Condensed Matter Physics Volume 2012, Article ID 501686, 56 pages.

[21] B. T. Kelly, Physics of Graphite, Applied Science, London, UK, (1981).

[22] C.D. Reddy, S. Rajendran, K.M. Liew, Equilibrium configuration and continuum elastic properties of finite sized graphene, Nanotechnology 17 (2006) 864–870.

DOI: https://doi.org/10.1088/0957-4484/17/3/042

[23] M.M. Shokrieh, R. Rafiee, Prediction of Young's modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach, Mater. Des. 31 (2010) 790–795.

DOI: https://doi.org/10.1016/j.matdes.2009.07.058

[24] M. Arroyo, T. Belytschko, Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule, Phys. Rev. B 69 (2004) 115415.

DOI: https://doi.org/10.1103/physrevb.69.115415

[25] K.N. Kudin, G.E. Scuseria, B.I. Yakobson, C2F, BN, and C nanoshell elasticity from ab initio computations, Phys. Rev. B 64 (2001) 235406.

DOI: https://doi.org/10.1103/physrevb.64.235406

[26] G.V. Lier, C.V. Alsenoy, V.V. Doren, P. Greelings, Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene, Chem. Phys. Lett. 326 (2000) 181–185.

DOI: https://doi.org/10.1016/s0009-2614(00)00764-8

[27] F. Liu, P. Ming, J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Phys. Rev. B 76 (2007) 064120.

[28] Y. Gao, P. Hao, Mechanical properties of monolayer graphene under tensile and compressive loading, Physica E 41 (2009) 1561–1566.

DOI: https://doi.org/10.1016/j.physe.2009.04.033

[29] Y.G. Yanovsky, E.A. Nikitina, Y.N. Karnet, S.M. Nikitin, Quantum mechanics study of the mechanism of deformation and fracture of graphene, Phys. Mesomech. 12 (5–6) (2009) 254–262.

DOI: https://doi.org/10.1016/j.physme.2009.12.007

[30] Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi, Y. Chen, Anisotropic mechanical properties of graphene sheets from molecular dynamics, Physica B 405 (2010) 1301–1306.

DOI: https://doi.org/10.1016/j.physb.2009.11.071

[31] J.L. Tsai, J.F. Tu, Characterizing mechanical properties of graphite using molecular dynamics simulation, Mater. Des. 31 (2010) 194–199.

DOI: https://doi.org/10.1016/j.matdes.2009.06.032

[32] S.K. Georgantzinos, G.I. Giannopoulos, N.K. Anifantis, Numerical investigation of elastic mechanical properties of graphene structures, Mater. Des. 31 (2010) 4646–4654.

DOI: https://doi.org/10.1016/j.matdes.2010.05.036

[33] C. Li, T.W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids Struct. 40 (2003) 2487– 2499.

[34] Y. Zhang, C. Pan, Measurements of mechanical properties and number of layers of graphene from nano-indentation, Diamond & Related Materials 24 (2012) 1–5.

DOI: https://doi.org/10.1016/j.diamond.2012.01.033

[35] Y.Y. Zhang, Y.T. Gu, Mechanical properties of graphene: Effects of layer number, temperature and isotope, Computational Materials Science 71 (2013) 197–200.

DOI: https://doi.org/10.1016/j.commatsci.2013.01.032

[36] A. L. Kalamkarov, A. V. Georgiades, S. K. Rokkam, V. P. Veedu, M. N. Ghasemi-Nejhad, Analytical and numerical techniques to predict carbon nanotubes properties, Int J Solid Struct. 43 (2006) 6832–54.

DOI: https://doi.org/10.1016/j.ijsolstr.2006.02.009