Highly Sensitive ZnO NWFET Biosensor Fabricated Using Top-Down Processes

Abstract:

Article Preview

A highly sensitive low-doped ZnO nanowire field effect transistor (NWFET) biosensor has been fabricated and measured. The low doped biosensor with NWFET transducer was used to sense charge of the following substances: lysozyme (LYSO), phosphate buffered saline (PBS), bovine serum albumin (BSA). It achieved maximum sensitivity of -543.2 % for the PBS-LYSO protein and 13,069 % for the PBS-BSA protein. These results were achieved because the electrical measurement and characterisation was focused on the charge effect of the LYSO and BSA acting on the ZnO nanowire subthreshold region. The nano-fabrication process is stable and reproducible. The high sensitivity of the ZnO NWFET biosensor can be exploited for selective analyte detection by functionalizing the nanowire surface with antibodies and/or other biomolecular probe molecules.

Info:

Periodical:

Pages:

66-74

Citation:

N. M.J. Ditshego, "Highly Sensitive ZnO NWFET Biosensor Fabricated Using Top-Down Processes", Journal of Nano Research, Vol. 55, pp. 66-74, 2018

Online since:

November 2018

Export:

[1] M. Curreli, R. Zhang, F. N. Ishikawa, H. K. Chang, R. J. Cote, C. Zhou, and M. E. Thompson, Real-time, label-free detection of biological entities using nanowire-based FETs,, IEEE Trans. Nanotechnol., vol. 7, no. 6, Nov. 2008, p.651–667.

DOI: https://doi.org/10.1109/tnano.2008.2006165

[2] A. Wei, L. Pan, and W. Huang, Recent progress in the ZnO nanostructure-based sensors,, Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 176, no. 18, 2011, p.1409–1421.

DOI: https://doi.org/10.1016/j.mseb.2011.09.005

[3] S. M. Sultan, N. J. Ditshego, R. Gunn, P. Ashburn, and H. M. Chong, Effect of atomic layer deposition temperature on the performance of top-down ZnO nanowire transistors., Nanoscale Research Letters, vol. 9, no. 1, Jan. 2014, p.517.

DOI: https://doi.org/10.1186/1556-276x-9-517

[4] N. M. J. Ditshego, K. Sun, I. Zeimpekis, P. Ashburn, M. R. R. de Planque, and H. M. H. Chong, Effects of surface passivation on top-down ZnO nanowire transistors,, Microelectron. Eng., vol. 145, Sep. 2015, p.91–95.

DOI: https://doi.org/10.1016/j.mee.2015.03.013

[5] N. M. J. Ditshego, N. A. B. Ghazali, M. Ebert, K. Sun, I. Zeimpekis, P. Ashburn, M. R. R. de Planque, and H. M. H. Chong, ZnO nanowire-FET for charge-based sensing of protein biomolecules,, in 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO), 2015, p.801.

DOI: https://doi.org/10.1109/nano.2015.7388733

[6] A. Menzel, K. Subannajui, F. Güder, D. Moser, O. Paul, and M. Zacharias, Multifunctional ZnO-Nanowire-Based Sensor,, Adv. Funct. Mater., vol. 21, no. 22, Nov. 2011, p.4342–4348.

DOI: https://doi.org/10.1002/adfm.201101549

[7] G. A. C. Jones, G. Xiong, and D. Anderson, Fabrication of nanoscale ZnO field effect transistors using the functional precursor zinc neodecanoate directly as a negative electron beam lithography resist,, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct., vol. 27, no. 6, Nov. 2009, p.3164.

DOI: https://doi.org/10.1116/1.3245989

[8] J. H. Jun, B. Park, K. Cho, and S. Kim, Flexible TFTs based on solution-processed ZnO nanoparticles.,, Nanotechnology, vol. 20, no. 50, Dec. 2009, p.505201.

DOI: https://doi.org/10.1088/0957-4484/20/50/505201

[9] M. Lee, K. Y. Baik, M. Noah, Y.-K. Kwon, J.-O. Lee, and S. Hong, Nanowire and nanotube transistors for lab-on-a-chip applications.,, Lab Chip, vol. 9, no. 16, Aug. 2009, p.2267–80.

DOI: https://doi.org/10.1039/b905185f

[10] C. Yang, C. Xu, and X. Wang, ZnO/Cu nanocomposite: a platform for direct electrochemistry of enzymes and biosensing applications.,, Langmuir, vol. 28, no. 9, Mar. 2012, p.4580–5.

DOI: https://doi.org/10.1021/la2044202

[11] K. Sun, I. Zeimpekis, M. Lombardini, N. M. J. Ditshego, S. J. Pearce, K. S. Kiang, O. Thomas, M. R. R. De Planque, H. M. H. Chong, H. Morgan, and P. Ashburn, Three-mask polysilicon thin-film transistor biosensor,, IEEE Trans. Electron Devices, 2014, pp.2170-2176.

DOI: https://doi.org/10.1109/ted.2014.2315669

[12] N. A. B. Ghazali, M. Ebert, N. M. J. Ditshego, M. R. R. de Planque, and H. M. H. Chong, Top-down fabrication optimisation of ZnO nanowire-FET by sidewall smoothing,, Microelectron. Eng., vol. 159, Jun. 2016, p.121–126.

DOI: https://doi.org/10.1016/j.mee.2016.02.068

[13] K. Sun, I. Zeimpekis, C. Hu, N. M. J. Ditshego, O. Thomas, M. R. R. De Planque, H. M. H. Chong, H. Morgan, and P. Ashburn, Low-cost top-down zinc oxide nanowire sensors through a highly transferable ion beam etching for healthcare applications,, Microelectronic Engineering, vol. 153, 2015, pp.96-100.

DOI: https://doi.org/10.1016/j.mee.2016.02.016

[14] P.-Y. Yang, J.-L. Wang, P.-C. Chiu, J.-C. Chou, C.-W. Chen, H.-H. Li, and H.-C. Cheng, pH Sensing Characteristics of Extended-Gate Field-Effect Transistor Based on Al-Doped ZnO Nanostructures Hydrothermally Synthesized at Low Temperatures,, IEEE Electron Device Lett., vol. 32, no. 11, Nov. 2011, p.1603.

DOI: https://doi.org/10.1109/led.2011.2164230

[15] N. Batra, M. Tomar, and V. Gupta, Realization of an efficient cholesterol biosensor using ZnO nanostructured thin film.,, Analyst, vol. 137, no. 24, Dec. 2012, p.5854–9.

DOI: https://doi.org/10.1039/c2an35693g

[16] Y.-C. Shen, C.-H. Yang, S.-W. Chen, S.-H. Wu, T.-L. Yang, and J.-J. Huang, IGZO thin film transistor biosensors functionalized with ZnO nanorods and antibodies.,, Biosens. Bioelectron., vol. 54, Apr. 2014, p.306–10.

DOI: https://doi.org/10.1016/j.bios.2013.10.043

[17] A. Wei, X. W. Sun, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, and W. Huang, Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition,, Appl. Phys. Lett., vol. 89, no. 12, Sep. 2006, p.123902.

DOI: https://doi.org/10.1063/1.2356307

[18] R. Ahmad, N. Tripathy, and Y.-B. Hahn, Wide linear-range detecting high sensitivity cholesterol biosensors based on aspect-ratio controlled ZnO nanorods grown on silver electrodes,, Sensors Actuators B Chem., vol. 169, Jul. 2012, p.382–386.

DOI: https://doi.org/10.1016/j.snb.2012.05.027

[19] M. Ahmad, C. Pan, Z. Luo, and J. Zhu, A single ZnO nanofiber-based highly sensitive amperometric glucose biosensor,, J. Phys. Chem. C, vol. 114, no. 20, May 2010, p.9308–9313.

DOI: https://doi.org/10.1021/jp102505g

[20] B. Reddy, B. R. Dorvel, J. Go, P. R. Nair, O. H. Elibol, G. M. Credo, J. S. Daniels, E. K. C. Chow, X. Su, M. Varma, M. a. Alam, and R. Bashir, High-k dielectric Al2O3 nanowire and nanoplate field effect sensors for improved pH sensing,, Biomed. Microdevices, vol. 13, no. 2, Apr. 2011, p.335.

DOI: https://doi.org/10.1007/s10544-010-9497-z

[21] K. Chen, B. Li, and Y. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation,, Nano Today, vol. 6, no. 2, Apr. 2011, p.131–154.

DOI: https://doi.org/10.1016/j.nantod.2011.02.001

[22] M.-Y. Shen, B.-R. Li, and Y.-K. Li, Silicon nanowire field-effect-transistor based biosensors: from sensitive to ultra-sensitive.,, Biosens. Bioelectron., vol. 60, Oct. 2014, p.101–11.

DOI: https://doi.org/10.1016/j.bios.2014.03.057

[23] N. Zhang, K. Yu, Q. Li, Z. Q. Zhu, and Q. Wan, Room-temperature high-sensitivity H[sub 2]S gas sensor based on dendritic ZnO nanostructures with macroscale in appearance,, J. Appl. Phys., vol. 103, no. 10, May 2008, p.104305.

DOI: https://doi.org/10.1063/1.2924430

[24] S. K. Yoo, S. K. Yoo, I. Hwang, I. Hwang, B. P. Mun, B. P. Mun, J. H. Lee, and J. H. Lee, High sensitivity ph sensing using schottky contacted silicon nanowire field-effect transistor 1,, October, vol. 1, no. d, 2008, p.323–325.

[25] J. Zhou, N. S. Xu, and Z. L. Wang, Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures,, Adv. Mater., vol. 18, no. 18, Sep. 2006, p.2432–2435.

DOI: https://doi.org/10.1002/adma.200600200

[26] S. Chen, J. G. Bomer, W. G. van der Wiel, E. T. Carlen, and A. van den Berg, Top-down fabrication of sub-30 nm monocrystalline silicon nanowires using conventional microfabrication.,, ACS Nano, vol. 3, no. 11, Nov. 2009, p.3485–92.

DOI: https://doi.org/10.1021/nn901220g

[27] C. G. Kang, J. W. Kang, S. K. Lee, S. Y. Lee, C. H. Cho, H. J. Hwang, Y. G. Lee, J. Heo, H.-J. Chung, H. Yang, S. Seo, S.-J. Park, K. Y. Ko, J. Ahn, and B. H. Lee, Characteristics of CVD graphene nanoribbon formed by a ZnO nanowire hardmask.,, Nanotechnology, vol. 22, no. 29, Jul. 2011, p.295201.

DOI: https://doi.org/10.1088/0957-4484/22/29/295201

[28] R. Chen, W. Zhou, and M. Zhang, Self-Aligned Indium–Gallium–Zinc Oxide Thin-Film Transistor With Phosphorus-Doped Source/Drain Regions,, … Device Lett. IEEE, vol. 33, no. 8, Aug. 2012, p.1150–11521152.

DOI: https://doi.org/10.1109/led.2012.2201444

[29] X. Duan, Y. Li, N. K. Rajan, D. a Routenberg, Y. Modis, and M. a Reed, Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors.,, Nat. Nanotechnol., vol. 7, no. 6, Jun. 2012, p.401–7.

DOI: https://doi.org/10.1038/nnano.2012.82

[30] A. Fulati, S. M. U. Ali, M. H. Asif, N. ul H. Alvi, M. Willander, C. Brännmark, P. Strålfors, S. I. Börjesson, F. Elinder, and B. Danielsson, An intracellular glucose biosensor based on nanoflake ZnO,, Sensors Actuators B Chem., vol. 150, no. 2, Oct. 2010, p.673.

DOI: https://doi.org/10.1016/j.snb.2010.08.021