Biological Properties of Ti-Si-C-O-N Thin Films

Abstract:

Article Preview

The main aim of this work was to study the feasibility of new coatings for medical devices. Ti-Si-C-O-N films were deposited by DC unbalanced reactive magnetron sputtering, using different oxygen and nitrogen partial pressure ratios (pO2/pN2). Surface properties were also analysed. Staphylococcus epidermidis was used to study biofilm formation and cytotoxicity was determined using fibroblasts. Surface morphology changed with the increase of pO2/pN2. Samples of high hydrophobicity displayed opposite behaviour in terms of biofilm formation, presenting the highest and lowest biomass. Moreover, the sample with the highest Ti content was the one, with the lowest biofilm amount, raising the possibility of a correlation between Ti and biofilm formation capability. In fact, this sample also displayed the highest degree of cytotoxicity (near 35%). This work shows the feasibility of the proposed coatings and highlights the importance of joining together both biological properties (biofilm formation and cytotoxicity) with the surface characterization.

Info:

Periodical:

Pages:

99-114

Citation:

M. Henriques et al., "Biological Properties of Ti-Si-C-O-N Thin Films", Journal of Nano Research, Vol. 6, pp. 99-114, 2009

Online since:

June 2009

Export:

Price:

$41.00

[1] K.S. Katti, Biomaterials in total joint replacement, Coll. Surf. B: Biointerfaces. 39 (2004) 133142.

[2] P.F. Sharkey, W.J. Hozack , R.H. Rothman , S. Shastri , S.M. Jacoby, Why are total knee arthroplasties failing today? Clin. Orthop. Relat. Res. 404 (2002)7-13.

DOI: https://doi.org/10.1097/00003086-200211000-00003

[3] D.V. Stansky, D.V. Levashov, N.B. Glushankova, N.B. D´yakonova , S.A. Kulinich, M.I. Petrzhik, F.V. Kiryukhantsev-Korneev, F. Rossi, Structure and properties of CaO- and ZrO2-doped TiCxNy coatings for biomedical applications, Surf. Coat. Technol. 182 (2004).

DOI: https://doi.org/10.1016/s0257-8972(03)00813-2

[4] J.A. Dupont, Significance of operative cultures in total hip arthroplasty, Clin. Orthop. Relat. Res. 211 (1986) 122-127.

[5] H. Khalil, R.J. Williams, G. Stenbeck, B. Henderson, S. Meghji, S.P. Nair, Invasion of bone cells by Staphylococcus epidermidis, Microb. Infect. 9 (2007) 460-465.

DOI: https://doi.org/10.1016/j.micinf.2007.01.002

[6] N. Cerca, S. Martins, G.B. Pier, R. Oliveira, J. Azeredo, The relationship between inhibition of bacterial adhesion to a solid surface by sub-MICs of antibiotics and subsequent development of a biofilm, Res. Microbiol. 156 (2005) 650-655.

DOI: https://doi.org/10.1016/j.resmic.2005.02.004

[7] B. Jansen, K. Kristinsson, S. Jansen, G. Peters, G. Pulverer, In-vitro efficacy of a central venous catheter complexed with iodine to prevent bacterial colonization, J. Antimicrob. Chemother. 30 (1992) 135-139.

DOI: https://doi.org/10.1093/jac/30.2.135

[8] S. Veprěk, A. Nioderhofer, K. Moto, T. Bolom, H-D. Männling, P . Nesladek, G. Dollinger, A. Bergmaier, Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and ncTiSi2 nanocomposites with HV=80 to ≥105 GPa, Surf. Coat. Technol. 152 (2000).

DOI: https://doi.org/10.1016/s0257-8972(00)00957-9

[9] F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Rivière, Preparation of magnetron sputtered TiNxOy thin films, Surf. Coat. Technol. : 197 (2003) 174-175.

DOI: https://doi.org/10.1016/s0257-8972(03)00416-x

[10] E. Ariza, L.A. Rocha, F. Vaz, L. Cunha, S.C. Ferreira, P. Carvalho, L. Rebouta, E. Alves, Ph. Goudeau, J.P. Rivière, Corrosion resistance of ZrNxOy thin films obtained by rf reactive magnetron sputtering, Thin Solid Films 274 (2004) 469-470.

DOI: https://doi.org/10.1016/j.tsf.2004.08.091

[11] C. Lopes, N.M.G. Parreira, S. Carvalho, A. Cavaleiro, J.P. Rivière, E. Le Bourhis, F. Vaz, Magnetron sputtered Ti-Si-C thin films prepared at low temperatures, Surf. Coat. Technol. 201 (2007)7180-7186.

DOI: https://doi.org/10.1016/j.surfcoat.2007.01.025

[12] F. Vaz, P. Cerqueira, L. Rebouta, S.M.C. Nascimento, E. Alves, Ph. Goudeau, J.P. Rivière, K. Pisschow, J. de Rijk, Structural, optical and mechanical properties of coloured TiNxOy thin films, Thin Solid Films 449 (2004) 447-448.

DOI: https://doi.org/10.1016/s0040-6090(03)01123-4

[13] S. Veprěk, P. Karvankova, M.G.J. Veprěk-Heijman, Possible role of Oxygen impurities in Ti-SiN nanocomposites, J. Vac. Sci. Technol. B 6 (2005) 17-21.

DOI: https://doi.org/10.1116/1.2131086

[14] C.J. van Oss Hydrophobicity and hydrophilicity of biosurfaces, Curr. Opin. Coll. Interf. Sci. 2 (1997) 503-512.

[15] M. Henriques, J. Azeredo, R. Oliveira, Candida albicans and Candida dubliniensis: comparison of biofilm formation in terms of biomass and activity, Br. J. Biomed. Sci. 63 (2006) 511.

DOI: https://doi.org/10.1080/09674845.2006.11732712

[16] F. Guimarães, C. Oliveira, E. Sequeiros, M. Torres, M. Susano, M. Henriques, R. Oliveira, R. Escobar Galindo, S. Carvalho, N.M.G. Parreira, F. Vaz, A. Cavaleiro, Structural, mechanical and biological properties of Ti-Si-C-ON for biomedical applications, Surf. Coat. Technol. 202 (2008).

DOI: https://doi.org/10.1016/j.surfcoat.2007.08.056

[17] F. Vaz, P. Carvalho, L. Cunha, L. Rebouta, C. Moura, E. Alves, A.R. Ramos, A. Cavaleiro, Ph. Goudeau, J.P. Rivière, Property change in ZrNxOy thin films: effect of the oxygen fraction and bias voltage, Thin Solid Films. 11 (2004) 469-470.

DOI: https://doi.org/10.1016/j.tsf.2004.06.191

[18] Y.T. Pei, D. Galvan, J. Th.M. De Hosson, Nanostructure and properties of TiC/a-C: H composite coatings, Acta Materialia 53 (2005) 4505-4521.

DOI: https://doi.org/10.1016/j.actamat.2005.05.045

[19] I. Tsyganov, M.F. Maitz, E. Wieser, E. Richter, H. Reuther, Correlation between blood compatibility and physical surface properties of titanium-based coatings, Surf. Coat. Technol. 200 (2005) 1041-1044.

DOI: https://doi.org/10.1016/j.surfcoat.2005.02.093

[20] K.A. Whitehead, D. Rogers, J. Colligon, C. Wright, J. Verran, Use of the atomic force microscope to determine the effect of substratum surface topography on the ease of bacterial removal, Colloids Surf. B: Bioint. 51 (2006) 44-53.

DOI: https://doi.org/10.1016/j.colsurfb.2006.05.003

[21] H.J. Busscher, A.W.J. van Pelt, P. de Boer, H.P. Jong, J. Arends, The effect of surface roughening of polymers on measured contact angles of liquids, Colloid Surf. 9 (1984) 319-331.

DOI: https://doi.org/10.1016/0166-6622(84)80175-4

[22] G. Bruinsma, H. van der Mei, H. Busscher, Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses, Biomaterials. 22 (2001) 3217-3224.

DOI: https://doi.org/10.1016/s0142-9612(01)00159-4

[23] G. Colon, B.C. Ward, T.J. Webster, Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2, J. Biomed. Mat. Res. Part A (2006) DOI10. 1002: 595-604.

DOI: https://doi.org/10.1002/jbm.a.30789

[24] F. Hardes, A. Streitburger, H. Ahrens, T. Nusselt, C. Gebert, W. Winkelmann, A. Battmann, G. Gosheger, The influence of elementary silver versus titanium on osteoblasts behavior in vitro using human osteosarcoma cell lines, Sarcoma. (2007).

DOI: https://doi.org/10.1155/2007/26539

[25] J. Yao, G. Cs-Szabo, J.J. Jacobs, K.E. Kuettner, T.T. Glant, Supression of osteoblast function by titanium particles, J. Bone Joint. Surg. 79 (1997) 107-112.

[26] S. Popescu, I. Demetrescu, The biocompatibility of titanium in a buffer solution: comopared effects of a thin film of TiO2 deposited by MOCVD and of collagen deposited from a gel, J. Mater. Sci.: Mater. Med. 18 (2007) 2075-(2083).

DOI: https://doi.org/10.1007/s10856-007-3133-3

[27] B. Feng, J. Weng, B.C. Yang, S.X. Qu, X.D. Zhang, Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials 24 (2003) 4663-4670.

DOI: https://doi.org/10.1016/s0142-9612(03)00366-1