Application of LIBS Technique for the Compositional Analysis of an Attic Black Pottery


Article Preview

In the last decades, numerous analytical techniques have been extensively used for the compositional analysis of objects of archaeological interest. However, on cultural heritage objects, the application of most techniques, such as AAS, XRD, ICP-MS, NAA and SEM-EDX is destructive and a significant amount of the sample is consumed. Furthermore, many of those techniques are expensive and time-demanding, mainly due to the sample preparation. In this work, LIBS is applied as an alternative technique for the qualitative and quantitative elemental analysis of the black glaze and the main body of an ancient Attic black ceramic. LIBS seems to be a most promising technique for such applications, considering that no sample preparation is required and that it is practically non-destructive, since only few μg of the sample’s surface are ablated. Furthermore, it is flexible concerning the geometrical characteristics of the sample under study and it can be applied in situ, at open field, providing a rapid, user-friendly analytical tool. The study showed that both black glaze and main body of the ceramic consist of the same elements: Si, Al, Fe, Ca, K, Mg, Ti and Na. This indicates that the black glaze is not a decorative paint, but originates from the same clay used for the main body after being processed differently. For the quantitative analysis, calibration curves of Fe, Ca, K, Mg, Al and Ti were constructed, by preparing stoichiometric reference samples of each element in a SiO2 matrix. All the calibration curves are presented and the restrictions for determining each element are discussed. For comparison purposes, the ceramic artifact was also studied by other techniques such as AAS, XRF, SEM-EDX and XRD. The results were correlated with the LIBS data, while the advantages as well as the limitations of each technique for the study of cultural heritage ceramics are discussed. To the best of our knowledge, this is the first complete work to determine quantitatively the compositional differences between the black glaze and the main body of an Attic black ceramic using the LIBS technique and also to compare the LIBS data with the results of other analytical techniques.








E. Xenogiannopoulou et al., "Application of LIBS Technique for the Compositional Analysis of an Attic Black Pottery", Journal of Nano Research, Vol. 8, pp. 61-70, 2009

Online since:

September 2009




[1] E. Gliozzo, I.W. Kirkman, E. Pantos, I.M. Turbanti: Archaeometry Vol. 46 (2004), p.227.

[2] P. Mitri, L. Appolonia, A. Casoli: Journal of Archaeological Science Vol. 26 (1999), p.1427.

[3] C.C. Tang, E.J. MacLean, M.A. Roberts, D.T. Clarke, E. Pantos, A.J.N.W. Prag: Journal of Archaeological Science Vol. 28 (2001), p.1015.

[4] Y. Maniatis, E. Aloupi, A.D. Stalios: Archaeometry Vol. 35 (1993), p.23.

[5] N.W. Bower, R.H. Fromund, R.H. Smith: J. Field Archaeol. Vol. 2 (1975), p.389.

[6] M.J. Hughes, M.R. Cowell, P.T. Craddock: Archaeometry Vol. 18 (1976), p.19.

[7] C. Rathossi, P. Tsolis-Katagas, C. Katagas: Applied Clay Science Vol. 24 (2004), p.313.

DOI: 10.1016/j.clay.2003.07.008

[8] A. Hein, P.M. Day, M.A. Cau Ontiveros, V. Kilikoglou: Applied Clay Science Vol. 24 (2004), p.245.

[9] B. Gratuze, M. Blet-Lemarquand, J.N. Barrandon : J. Radioanalytical Nucl. Chem. Vol. 247 (2001), p.645.

DOI: 10.1023/a:1010623703423

[10] M.J. Feliu, M.C. Edreira, J. Martin: Analytica Chimica Acta Vol. 502 (2004), p.241.

[11] S.R. Wolff, D.J. Liddy, G.W.A. Newton, V.J. Robinson, R.J. Smith: Journal of Archaeological Science Vol. 13 (1986), p.245.

[12] R.H. King: Applied Clay Science Vol. 2 (1987), p.199.

[13] P. Mitri, M. Gulmini, A. Perardi, P. Davit, D. Elia : Anal. Bioanal. Chem. Vol. 380 (2004), p.712.

[14] D.N. Papadopoulou, G.A. Zachariadis, A.N. Anthemidis, N.C. Tsirliganis, J.A. Stratis: Talanta Vol. 68 (2006), p.1692.

DOI: 10.1016/j.talanta.2005.08.051

[15] D. Anglos, J. C. Miller in: Laser Induced Breakdown Spectroscopy, edited by A. W. Miziolek, V. Palleschi, I. Schechter, Cambridge University Press, Cambridge (2006).

[16] K. Melessanaki, M. Mateo, S.C. Ferrence, P.P. Betancourt, D. Anglos : Appl. Sur. Sc. Vol. 197-198 (2002), p.156.

[17] A. Brysbaert, K. Melessanaki, D. Anglos: Journal of Archaeological Science Vol. 33 (2006), p.1095.

[18] F. Colao, R. Fantoni, V. Lazic, V. Spizzichino: Spectrochim. Acta Part B Vol. 57 (2005), p.1219.

[19] A.J. Lopez, G. Nicolas, M.P. Mateo, V. Pinon, M.J. Tobar, A. Ramil: Spectrochim. Acta Part B Vol. 60 (2005), p.1149.

[20] Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee: Microchemical Journal Vol. 68 (2001), p.251.

[21] K. Muller, H. Stege: Archaeometry Vol. 45 (2003), p.421.

[22] M.P. Mateo, G. Nicolas, V. Pinon, A. Yanez: Surf. Interface Anal. Vol. 38 (2006), p.941.

[23] A.S. Eppler, D.A. Cremers, D.D. Hickmott, M.J. Ferris, A.C. Koskelo: Applied Spectroscopy 50 (1996), p.1175.

[24] M.A. Gondal, T. Hussain, Z. Ahmed, A. H. Bakry: Journal of Environmental Science and Health Part A Vol. 42 (2007), p.879.

[25] P. Stavropoulos, C. Palagas, G. N. Angelopoulos, D.N. Papamantellos, S. Couris: Spectrochim. Acta, Part B Vol. 59 (2004), p.1885.

[26] V. Thomsen, D. Schatzlein, D. Mercuro: Spectroscopy Vol. 18 (2003), p.112.

[27] D.A. Skoog, F.J. Holler, T.A. Nieman: Principles of Instrumental Analysis (Saunders College Publishing 1992).

[28] H. Aloupi: PhD Thesis (in Greek) (Ioannina University, Greece 1994).

In order to see related information, you need to Login.