Ab Initio Study of Selected PAMAM Dendrimers: von Neumann Entropies Analysis


Article Preview

Quantum information theory is employed to analyze the growing behavior of nanostructured molecules through marginal H-type von Neumann informational entropies. This is achieved by performing ab initio electronic structure calculations at the Hartree-Fock level of theory to characterize the initial steps towards growing Polyamidoamine (PAMAM) dendrimers, starting from conformational structures of polymeric precursors up to generations G0 (with 84 atoms), G1 (228 atoms), G2 (516 atoms), and G3 (1092 atoms). Several physical descriptors like radius of gyration, asphericity factor, moments of inertia and dipole moments, along with chemical reactivity indexes such as total energies, hardness and electrophilicity are employed to provide evidence for the validity of dense-core model of dendrimers.



Edited by:

Velumani S., R. Asomoza and Umapada Pal






R. O. Esquivel et al., "Ab Initio Study of Selected PAMAM Dendrimers: von Neumann Entropies Analysis", Journal of Nano Research, Vol. 9, pp. 1-15, 2010

Online since:

February 2010




[1] CH Bennett, G. Brassard, C. Crépeau, R. Josza, A. Peres and W. K. Wootters: Phys. Rev. Lett. 70 (1993) 1895-1899.

DOI: 10.1103/physrevlett.70.1895

[2] D. Boschi, S. Branca, F. De Martini, L. Hardy and Popescu: Phys. Rev. Lett. 80 (1998)11211125.

[3] D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger: Nature 390 (1997) 575-579.

DOI: 10.1038/37539

[4] D. Bouwmeester, K. Mattle, J. W. Pan, H. Weinfurter, A. Zeilinger, and M. Zukowski: Appl. Phys. B 67 (1998) 749-752.

[5] S. L. Braunstein and H. J. Kimble: Nature 394 (1998) 840-841.

[6] A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble and E. S. Polzik: Science 282 (1998) 706-709.

[7] T. Krüger: Eur. Phys. J. D. 14 (2001) 299-308.

[8] R. F. W. Bader: An Introduction to the Structure of Atoms and Molecules (Toronto, Clarke, 1970).

[9] R. F. W. Bader: Atoms in Molecules (New York, Oxford, 1994).

[10] P. Ayers: J. Chem. Phys. 113 (2000) 10886-10898.

[11] R. F. W. Bader and T. T. Nguyen-Dang: Adv. Quantum Chem. 14 (1981) 63-124.

[12] A. Cedillo, P. K. Chattaraj, and R. G. Parr: Int. J. Quantum Chem. 77 (2000) 403-407.

[13] F. L. Hirshfeld: Theor. Chim. Acta 44 (1977) 129-138.

[14] L. Li and R. G. Parr: J. Chem. Phys. 84 (1986) 1704-1711.

[15] W. Moffitt: Proc. R. Soc. London, Ser. A 210 (1951) 245-268.

[16] R. S. Mulliken: J. Chem. Phys. 3 (1935) 573-585.

[17] R. S. Mulliken: J. Chem. Phys. 23 (1955) 1833-1840.

[18] R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke: J. Chem. Phys. 68 (1978)3801-3807.

[19] R. G. Parr: Int. J. Quantum Chem. 26 (1984) 687-692.

[20] J. Rychlewski and R. G. Parr: J. Chem. Phys. 84 (1986) 1696-1703.

[21] J. Lin: IEEE Trans. On Inf. Theory 37 (1991) 145-151.

[22] W. Moffitt: Proc. R. Soc. London, Ser. A 210 (1951) 245-268.

[23] R. S. Mulliken: J. Chem. Phys. 3 (1935) 573-585.

[24] R. S. Mulliken: J. Chem. Phys. 23 (1955) 1833-1840.

[25] A.E. Reed, R.B. Weinstock, and F. Weinhold: J. Chem. Phys. 83 (1985) 735-746.

[26] G. Bruhn, E. R. Davidson, I. Mayer and A. E. Clark: Int. J. Quantum Chem. 106 (2006) 20652072.

[27] P. O. Löwdin: Phys. Rev. 97 (1955)1474-1489.

[28] E. Carrera, N. Flores-Gallegos and R.O. Esquivel: J. Comp. App. Math. (2009), doi: 10. 1016/j. cam. 2009. 02. 086.

[29] R. O. Esquivel, A. L. Rodriguez, R. P. Sagar, M. Ho, and V. H. Smith: Jr., Phys. Rev. A 54 (1996), 259-265.

[30] N. L. Guevara, R. P. Sagar and R. O. Esquivel: Phys. Rev. A 67 (2003)012507- 0125076.

[31] N. L. Guevara, R. P. Sagar and R. O. Esquivel: J. Chem. Phys. 122 (2005) 084101- 0841018.

[32] J. C. Ramírez, C. Soriano, R. O. Esquivel, R. P. Sagar, M Ho and V. H. Smith: Jr., Phys. Rev. A 56 (1997) 4477-4482.

[33] K.D. Sen, J. Antolin, and J.C. Angulo: Phys. Rev. A 76 (2007) 0325021-0325027.

[34] K.D. Sen, C.P. Panos, K. Ch. Chatsisavvas and Ch. C. Moustakidis: Phys. Lett. A 364 (2007) 286-290.

[35] P. Ziesche, O. Gunnarsson, W. John and H. Beck: Phys. Rev. B 55 (1997) 10270-10277.

[36] C. Amovilli and N. H. March: Phys. Rev. A 69 (2004)0543021-0543024.

[37] Z. Huang and S. Kais: Chem Phys Lett 413 (2005) 1-5.

[38] Z. Huang, H. Wang and S. Kais: J. Mod. Opt. 53 (2006) 2543-2558.

[39] N. Flores-Gallegos and R. O. Esquivel: J. Mex. Chem. Soc. 52(1) (2008)19-30; N. Flores-Gallegos, R. O. Esquivel (unpublished).

[40] P. Holister, C. Roman-Vas and T. Harper: Dendrimers: Technology White Papers, Vol. 6 (2003), pp.1-15.

[41] D. A. Tomalia, H. Baker,J. Dewald,M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder and P. Smith: Polym. J. 17 (1985)117.

[42] H. M. Janssen and E. W. Meijer: In Synthesis of Polymers: Materials Science and Technology Series; A. D. Schüter, Ed.; R. W. Cahn, P. Haasen, E. J. Kramer, series Eds.; Wiley-VCH: Weinheim, (1999), p.403.

[43] M. Fischer and F. Vögtle: Angew. Chem., Int. Ed., Vol. 38 (1999), pp.884-905.

[44] F. Zeng and S. C. Zimmerman: Chem. Rev. 97 (1997)1681.

[45] O. A. Matthews, A. N. Shipway and J. F. Stoddart: Prog. Polym. Sci. Vol. 23 (1998), p.1.

[46] D. A. Tomalia, A. M. Naylor and W. A., Goddard III: Angew. Chem., Int. Ed. Engl., Vol. 29 (1990), p.138.

[47] D. A. Tomalia, B. Huang, D. R. Swanson, H. M. Brothers, II and J. W. Klimash: Tetrahedron 59 (2003) 3799.

[48] H. -F. Chow, T. K. -K. Mong, Y. -H. Chan and C. H. Cheng: Tetrahedron 59 (2003)3915.

[49] F. Diederich and B. Felber: Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 4779.

[50] L. Liu and R. Breslow: J. Am. Chem. Soc. 125 (2003) 12110.

[51] F. Zeng and S. C. Zimmerman: Chem. ReV. 97 (1997) 1681.

[52] F. Vögtle, S. Gestermann, R. Hesse, H. Schwierz and Windisch, B: Prog. Polym. Sci. 25 (2000) 987.

[53] A. Adronov and J. M. Fréchet: J. Chem. Commun. 18 (2000) 1701.

[54] A. W. Freeman, S. C. Koene, P. R. L. Malenfant, M. E. Thompson, and J. M. J. Fréchet: J. Am. Chem. Soc. 122 (2000)12385.

[55] V. Balzani, P. Ceroni, S. Gestermann, C. Kauffmann, M. Gorkab and F. Vögtle: Chem. Commun. 10 (2000) 853.

[55] J. M. Fréchet: J. Proc. Natl. U.S.A. Vol. 99 (2002), p.4782.

[56] S. C. Zimmerman and V. Zeng: Science 271 (1996)1095.

[57] J. F. G. A. Jansen and E. W. de Brabander: Science 266 (1994) 1226.

[58] S. Jockush, J. Ramirez, K. Sanghvi, R. Nociti, N. J. Turro and D.A. Tomalia: Macromolecules 32 (1999) 4419.

[59] G. R. Newkome, C. N. Moorefield and F. Vögtle: Dendritic Molecules: Concepts, Synthesis, Perspectives, Wiley-VCH, Weinheim (1996).

[60] M. Ballauff: Dendrimers III: Design, Dimension, Function: Top. Curr. Chem. Vol. 212 (2001), pp.177-194.

[61] D. Pötschke and M. Ballauff: Structure of Dendrimers in Solution as Probed by Scattering Experiments, in Structure and Dynamics of Polymer and Colloidal Systems (Eds.: R. Borsali, R. Pecora), Kluwer, Dordrecht (2002).

DOI: 10.1007/978-94-010-0442-8_6

[62] S. Hecht and J. Polym: Sci. Part A 41 (2003)1047 - 1058.

[63] G. R. Newkome, C. Moorefield and F. V*gtle: Dendrimers and Dendrons, Wiley-VCH, New York (2001).

[64] Dendrimers and Other Dendritic Polymers (Eds.: J. M. J. FrVchet, D. A. Tomalia), Wiley- VCH, Weinheim (2001).

[65] P. G. de Gennes and H. Hervet: J. Phys. Lett. Vol. 44 (1983), L351 - L360; S. F. Edwards: Proc. Phys. Soc. London, Vol. 85 (1965), pp.613-624.

[66] R. L. Lescanec and M. Muthukumar: Macromolecules (1990) 2280 - 2288.

[67] D. Boris and M. Rubinstein: Macromolecules 29 (1996) 7251 - 7260; T. C. Zook and G. Pickett: Phys. Rev. Lett. 90 (2003) 105502.

[68] R. La Ferla: J. Chem. Phys. Vol. 106 (1997), pp.688-700; F. Ganazzoli, R. La Ferla and G. Terragni: Macromolecules vol. 33 (2000), pp.6611-6620; F. Ganazzoli: Condens. Matter Phys. 5 (2002)37 - 71.

DOI: 10.1021/ma000258+

[69] E. G. Timoshenko, Yu. A. Kuznetsov and R. Connolly: J. Chem. Phys. 117 (2002) 9050 - 9062.

[70] M.P. Allen and D.J. Tildesley: Computer Simulation of Liquids, Clarendon, Oxford (1987); D. Frenkel and B. Smit: Understanding Molecular Simulation, Academic Press, San Diego, (1996).

[71] P.K. Maiti, T Cagin, G. Wang and W.A. Goddard III: Macromolecules 37 (2004)6236.

[72] F. Tarazona-Vasquez and P. B. Balbuena: J. Phys. Chem. B 108 (2004)15982-16001.

[73] R. O. Esquivel, N. Flores-Gallegos, E. Carrera, J. Sánchez-Dehesa, J. C. Angulo, J. Antolín, and C. Soriano-Correa: Mol. Sim. 35, No. 6 (2009)498-511.

[74] C. E. Shannon and W. Weaver: (1949), The Mathematical Theory of Communication (University of Illinois, Urbana, IL).

[75] A. Einstein, B. Podolsky and N. Rosen: Phys. Rev. 47 (1935) 777; J. Bell: Speakable and Unspeakable in Quantum Mechanics (1987) (Cambridge University, Cambridge).

[76] J. von Neumann: Mathematical Foundations of Quantum Mechanics (1955), translated from the German ed. by R. T. Beyer (Princeton University, Princeton).

DOI: 10.1017/cbo9781139034197.018

[77] A. Wehrl: Rev. Mod. Phys. 50 (1978) 221.

[78] V. Vedral: Rev Mod. Phys. 74 (2002) 197.

[79] P.O. Lowdin: Adv. Quantum Chem. 5 (1970) 185.

[80] A.E. Reed and F. Weinhold: J. Chem. Phys. 78 (1983) 4006.

[81] E.R. Davidson: J. Chem. Phys. 46 (1967) 3320.

[82] A.E. Reed, R. B Weinstock and F. Weinhold: J. Chem. Phys. 83 (1985) 735.

[83] G. Bruhn, E.R. Davidson, I. Mayer and A.E. Clark: Int. J. Quantum Chem. 106 (2006)(2065).

[84] E. J. Bylaska, W. A. de Jong, K. Kowalski, T. P. Straatsma, M. Valiev, D. Wang, E. Apra, T. L. Windus, S. Hirata, M. T. Hackler, Y. Zhao, P. -D. Fan, R. J. Harrison, M. Dupuis, D. M. A. Smith, J. Nieplocha, V. Tipparaju, M. Krishnan, A. A. Auer, M. Nooijen, E. Brown, G. Cisneros, G. I. Fann, H. Fruchtl, J. Garza, K. Hirao, R. Kendall, J. A. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan, K. Dyall, D. Elwood, E. Glendening, M. Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, L. Pollack, M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas, J. van Lenthe, A. Wong, and Z. Zhang: NWChem, A Computational Chemistry Package for Parallel Computers, Version 5. 0, (2006).

DOI: 10.1016/s0010-4655(00)00065-5

[85] NBO 5. 0. Glendening E. D. Badenhoop J, K. Reed A. E. Carpenter J. E. Bohmann J. A. Morales C. M and Weinhold F: Theoretical Chemistry Institute (2001), University of Wisconsin, Madison.

[86] The geometric parameters of dendrimers G0 through G3 were obtained from P.K. Maiti (see Ref. 72).

[87] G. Rudnick and G. Gaspari: J. Phys. A 4 (1986)L191.

[88] R. G. Parr and R. G Pearson: J Am Chem Soc vol. 105 (1983), p.7512; R. G. Parr and W. Yang: Density-Functional Theory of Atoms and Molecules, Oxford University Press: New York (1989).

[89] T. A. Koopmans: Physica vol. 1 (1933), p.104; J. F. Janak: Phys. Rev B 18 (1978) 7165.

[90] P. K. Chattaraj, U. Sarkar and D. R. Roy: Chem Rev 106 (2006) (2065).

[91] M. Ballauff and C. N. Likos Angew: Chem. Int. Ed. 43 (2004)2998 - 3020.

[92] J. M. Pérez-Jordá and A. D. Becke: J. Chem. Phys. 10 (1994) 100.

In order to see related information, you need to Login.