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Abstract. In this study, we investigated a trench-gate silicon carbide metal-oxide-semiconductor 
field-effect transistor (SiC-MOSFET) edge-termination structure using an oxide film along the trench 
surface to simplify the manufacturing process. The trench structure in the termination region serves 
as a guard ring, eliminating the need for a separate guard ring process and thereby reducing the 
number of process steps. To suppress electric field concentration at the edge of the cell region under 
high voltage, a boundary region between the cell and termination regions was implemented. 
Technology Computer-Aided Design (TCAD) device simulations confirmed that by using the 
boundary region and narrowing the mesa width, avalanche breakdown was prevented up to the 
breakdown voltage of the cell region.  

Introduction 
A trench-gate silicon carbide metal-oxide-semiconductor field-effect transistor (SiC-MOSFET) is 

anticipated to achieve low specific on-resistance (Ron,sp) by increasing cell density and enhancing 
channel mobility [1]. We previously reported a 1.2 kV class trench-gate SiC-MOSFET that achieved 
low Ron,sp [2]. With the increasing demand for 1.2 kV class trench-gate SiC-MOSFETs in the electric 
vehicle market, reducing the number of process steps is crucial. Various termination structures for 
trench-gate SiC-MOSFETs have also been explored [3, 4]. Conventional termination structures 
require additional process steps to form a guard ring. In this study, we investigated an edge-
termination structure using an oxide film along the trench surface. Since the trench structure in the 
termination region acts as a guard ring, the need for a separate guard ring process is eliminated, 
thereby reducing the number of process steps. Technology Computer-Aided Design (TCAD) 
simulations confirmed the breakdown voltage, electric field, and impact ionization characteristics of 
this structure.  
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Design and Fabrication 
Figure 1 shows the schematic cross-sectional view of the edge-termination structure using an oxide 

film along the trench surface [5]. This structure is composed three regions: the cell, boundary, and 
termination regions. The color of the electrodes in the trench structure corresponds to the electrical 
potential. Gray electrodes within the cell region are connected to the gate potential. Light gray 
electrodes within the boundary region are connected to the source potential. Green electrodes within 
the termination region are at floating potential and are not connected to each other. In the cell region, 
current flows when the gate is turned on. The termination region comprises floating electrodes, an 
oxide film along the trench surface, and a surrounding p-type implanted layer. The lateral electric 
field is gradually relaxed due to the oxide film along the trench surface. In the boundary region, the 
gate electrode is connected to the source electrode, preventing current flow through the channel, and 
avoiding changes in the lateral electrostatic potential. The boundary region separates the cell and 
termination regions. 

Figure 2 also illustrates the cross-sectional fabrication process flow of the trench-gate SiC-
MOSFET edge-termination structure. (i) First, the p-type well region and n-type source region are 
formed by vertical Al and N implantation into the n-type drift layer using photolithography. (ii) Next, 
an SiO2 hard mask for SiC trench etching is created by dry etching after SiO2 deposition with 
photolithography. (iii) The SiC trench structure is then formed by dry etching using the SiO2 hard 
mask. (iv) The bottom p-well (BPW) is formed by vertical self-aligned implantation into the trench 
bottom with the SiO2 hard mask remaining after SiC trench etching. In conventional edge-termination 
structures, a resist mask must be formed by photolithography in areas where the BPW is not to be 
formed. However, in this structure, the BPW is used as a guard ring, eliminating the need for a resist 
mask, and the BPW is formed using only an SiO2 hard mask, making photolithography unnecessary 
and reducing the number of process steps. (v) The SiO2 hard mask is then removed, and the p-type 
and n-type sidewall regions are formed by tilted Al and N implantation with photolithography, 
respectively. Conventional edge-termination structures require additional implantation steps 
involving photolithography to form edge-termination structures such as guard rings [6] or the junction 
termination extension (JTE) [7], but the edge-termination structure of the present invention eliminates 
these steps. (vi) Finally, activation annealing, gate formation, contact formation, and metallization 
are carried out. 

By adopting this edge-termination structure, it is possible to eliminate manufacturing processes 
required for forming edge-termination structures such as guard rings or JTE, thereby reducing the 
need for multiple steps, including photolithography, etching, and cleaning. However, forming 
trenches in the boundary and termination regions with the same mesa width as the cell region leads 
to electric field concentration at the edge of the cell region, which reduces the device breakdown 
voltage below the cell breakdown voltage. Therefore, we explored methods to suppress the reduction 
in breakdown voltage. 
 

 
 
 
 

Fig. 1. Schematic of the cross-sectional view of the edge-termination structure 
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Structure that Realizes Cell Breakdown Voltage 
Figure 3 illustrates the schematic cross-sectional view of (a) the structure where the termination 

region is directly adjacent to the cell region and (b) the structure where the cell and termination 
regions are separated by a boundary region. Figure 4 shows the electric-field distribution and voltage 
equipotential lines for (a) and (b) when 1.35 kV is applied. The structure with a boundary region (b) 
suppresses the electric field at the edge of the cell region more effectively than the structure without 
a boundary region (a). Figure 5 presents the electric field profile at the C1 point in Figure 3 under 
1.35 kV. The maximum electric field value is higher in structure (a) than in structure (b). Additionally, 
in structure (a), the maximum electric field occurs at the edge of the cell region, whereas in structure 
(b), it is located within the cell region. In the cell region, an n-type implanted layer extends to the 
trench sidewall to ensure a current path. A depletion layer forms in the n-type implanted layer, 
resulting in a higher electric field compared to the area surrounded by the p-type implanted layer [8]. 
In structure (a), the electric field is further concentrated due to lateral electric field relaxation [9], 
reducing the breakdown voltage. In structure (b), the trench structure adjacent to the cell region, where 
the electric field tends to concentrate, is set to the source potential. Consequently, lateral electric field 
relaxation begins at a point farther from the cell region, separating the electric field concentration 
caused by lateral electric field relaxation from that on the trench sidewalls, thereby preventing a 
decrease in breakdown voltage. 

Figure 6 depicts the simulated breakdown voltage dependence on mesa width for structures with 
and without a boundary region. Structures with a boundary region exhibit higher breakdown voltages 
compared to those without one. This improvement in breakdown voltage is attributed to the 
separations of the cell and termination regions by the boundary region, which suppresses electric field 
concentration at the edge of the cell region. Furthermore, reducing the mesa width further suppresses 
electric field concentration [10]. BPW at the bottom of the trench acts as a guard ring, if the mesa 
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width is reduced, the electric field that can be mitigated by a single trench structure becomes smaller. 
Reducing the mesa width extends the depletion layer, but it suppresses electric field concentration 
and increases the breakdown voltage. When the mesa width is 1.7 μm or less, the breakdown voltage 
matches that of the cell region. In the structure without a boundary region, reducing the mesa width 
can improve breakdown voltage, but it does not reach the breakdown voltage of the cell region. For 
mesa width down to 1.3 µm, the depletion layer does not extend to the edge of the termination region, 
resulting in an increase in breakdown voltage. However, when the mesa width is reduced to 1.1 µm, 
the depletion layer reaches the edge of the termination region, causing the electric field to concentrate 
at the edges of the cell and termination regions, which decreases the breakdown voltage [10]. 
 

 
 

 

Fig. 3. Schematic cross-sectional view of structures with and without boundary region  
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Figure 7 shows the impact ionization rate at the time of avalanche breakdown for mesa widths of 

2.3 μm and 1.3 μm for structures with and without a boundary region. For structures with the 
boundary region, avalanche breakdown occurs at the edge of the boundary region with a mesa width 
of 2.3 μm but occurs inside the cell region with a mesa width of 1.3 μm. In contrast, for structures 
without the boundary region, avalanche breakdown does not occur inside the cell region regardless 
of the mesa width. As described, achieving the cell breakdown voltage can be accomplished by 
reducing the mesa width and incorporating a boundary region in the edge-termination structure using 
an oxide film along the trench surface. 
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Summary 
In this study, we conducted TCAD simulations to analyze the breakdown characteristics of the 

edge-termination structure using an oxide film along the trench surface. By utilizing the trench 
structure as a guard ring, we eliminate the need for a separate guard ring process, thereby reducing 
the number of process steps. Our observations indicate that with the boundary region, when the mesa 
width is 1.7 μm or less, the breakdown voltage of the termination region matches that of the cell 
region. The lateral electric field relaxation is separated from the electric field concentration on the 
trench sidewalls, which helps suppress the decrease in breakdown voltage. We plan further 
optimization the edge-termination structure and verify its robustness. 
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