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Abstract. This study investigates a cost-effective semi-Superjunction (SSJ) solution for 3.3 kV 
silicon carbide (SiC) MOSFETs, comparing planar and trench configurations. The semi-SJ method, 
utilizing side-wall implantation and silicon oxide trench refill, offers a practical alternative to the 
more complex multi-epitaxial growth approach. Through TCAD simulations, the planar semi-SJ 
MOSFET (planar-SSJ) achieved a 48 % reduction in specific on-state resistance (7.5 mΩ.cm2) and a 
4.5 % improvement in maximum blocking voltage (4210 V) compared to conventional planar 
MOSFET. The trench semi-SJ MOSFET (trench-SSJ), depending on the deep trench angle, can 
further reduce the specific on-state resistance by 52 % (7.0 mΩ.cm2) and improve the maximum 
blocking voltage by 6 % (4285 V), while also providing a wider implantation window and a lower 
gate-oxide electric field. 

Introduction 
Silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs) are 

increasingly replacing silicon (Si) in high-switching applications within the blocking voltage range 
of 650 V to 1700 V [1]. In high-voltage SiC MOSFETs, especially those exceeding 3000 V, the thick 
drift region is the major contributor to on-state resistance, resulting in conduction losses comparable 
to or greater than those of silicon insulated-gate bipolar transistors (IGBTs) [2]. To overcome the 1D 
unipolar limit of SiC MOSFETs, Superjunction (SJ) and semi-Superjunction (SSJ) technologies have 
been introduced, offering an improved tradeoff between conduction losses and breakdown voltage 
(BV) [3,4]. Unlike in Si, the commercialization of these designs in SiC faces challenges due to the 
complexity of forming deep p-type pillars. Two main fabrication methods exist for SJ structures:        
1. Multi-epitaxial growth with shallow aluminum (Al) implants to form the p-pillar, and 2. Side-wall 
Al implantation through deep trenches, which are then refilled with silicon oxide (SiO2) [1-5]. Both 
techniques have been experimentally demonstrated in [2,4,5], with the multi-epitaxial growth method 
being more complex due to potential misalignment issues and the requirement for multiple 
implantation steps. While multi-epitaxial growth enables the implementation of a full-SJ design, side-
wall implantation is typically limited by implantation angles and trench depth, favoring a semi-SJ 
design [2,3]. Despite these limitations, side-wall implantation offers significant on-state performance 
improvements with simpler fabrication steps compared to the multi-epitaxial approach. 

The authors have previously introduced cost-effective methods for fabricating Schottky barrier 
diodes (SBDs), optimizing a semi-SJ structure, enabling the SJ effect with minimal implantation 
depth and wide implantation window [3,6]. In this study, a 3.3 kV SSJ SiC MOSFET is proposed 
using these techniques, with the goal of reducing fabrication costs and improving on-state resistance. 
TCAD simulations were used to evaluate and compare the performance of a standard planar structure, 
a planar Semi-SJ MOSFET (planar-SSJ), and trench semi-SJ MOSFET (trench-SSJ) devices. 
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Structure Description 
The half-cell pitch schematic of the planar, planar-SSJ and trench-SSJ MOSFET is shown              

in Fig. 1, with highlighted key parameters. The planar MOSFET structure was based on [7] and 
adjusted to match the on-state performance in [8]. The p-base depth (tbase) of 1.0 µm, half-cell JFET 
opening (wJFET) of 0.7 µm and half-cell pitch (wpitch) of 3.4 µm is in both conventional and planar-
SSJ designs. The channel width of 0.5 µm and drift doping concentration of 3×1015 cm-3 across all 
three designs. The half-cell pitch in the trench-SSJ design is 2.6 µm and based on the optimization 
results detailed in [3], the optimal depth of the source connected trench is 7 µm and 1.5 µm (half-cell) 
wide (wS), with a nitrogen (N) n-top layer doping concentration of 3×1016 cm-3 in both planar and 
trench-SSJ configurations. Note, that the active trench is protected with the p-ring implanted through 
the bottom of the active trench, to protect the gate-oxide from high electric fields (EFs). The depth of 
the p-ring is fixed at 0.5 µm with the peak doping concentration of 4×1018 cm-3. The side-wall               
p-implantation depth (dp) is 0.25 µm and the doping concentration is part of the design       
optimization [3,6]. 

 
                      (a)                                                 (b)                                              (c) 

Fig. 1. (a) planar MOSFET, (b) planar-SSJ MOSFET and (c) trench-SSJ MOSFET. 

On-State Performance 
The on-state and transfer characteristics are shown in Fig. 2 (a) and (b). The channel doping 

concentration was calibrated to result in threshold voltage (Vth) of 3.5 V at 1 mA/cm2. In both on-
state and off-state simulations, the fixed charge density (QF) of 1×1012 cm-2 and Dit trap density 
extrapolated from [9] was modelled at the interface between SiO2 and SiC. Note, that the on-state 
performance of the planar-SSJ device is not affected by the side-wall doping concentration, due to a 
small JFET effect along the semi-SJ region [3]. This is also true for the trench-SSJ configuration, 
where the pitch size is smaller compared to the planar solutions. The specific on-state resistance 
(RON,SP) at 100 A/cm2 is 14.5 mΩ.cm2, 7.5 mΩ.cm2 and 7.0 mΩ.cm2 for planar (wpitch – 3.4 µm), 
Planar-SSJ (wpitch – 3.4 µm) and Trench-SSJ (wpitch – 2.6 µm) MOSFETs, respectively. 
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                      (a)                                                                            (b)               

Fig. 2. Planar, planar-SSJ (α = 80 degrees) and trench-SSJ (α = 80 degrees) MOSFET (a) on-state 
characteristics and (b) transfer characteristics. 

This represents a 48 % and 52 % reduction in specific on-state resistance for planar-SSJ and 
trench-SSJ designs compared to the conventional planar MOSFET. While the on-state improvement 
of the trench-SSJ compared with the planar-SSJ is small, due to the introduction of a p-ring at the 
bottom of the active trench. However, a narrower pitch compensates for this additional resistance and 
also enhances the off-state performance due to an improved charge balance, which will be discussed 
in the next section. 

Off-State Performance 
As described in [3,6], the blocking performance of the semi-SJ structure depends on the charge 

balance between the side-wall p-layer and the fixed n-top layer (3×1016 cm-3). It is also affected by 
the distance between deep trenches and the trench opening (wS). The trench angle (α – 80 degrees), 
shown in Fig. 1, causes uneven charge distribution in the semi-SJ region compared to ideal vertical p 
and n-pillars [1,3]. The conventional planar MOSFET has a maximum breakdown voltage (BV) of 
4030 V. Fig. 3 (a) shows the BV of Planar-SSJ and Trench-SSJ designs as a function of the peak side-
wall doping concentration, while Fig. 3 (b) presents the simulated reverse leakage current. 

  
                      (a)                                                                              (b)               

Fig. 3. (a) BV versus p-implantation doping concentration and (b) off-state performance of the 
conventional MOSFET versus planar-SSJ (α = 80 degrees) and trench-SSJ (α = 80 degrees) with the 
peak side-wall doping concentration: 8.5×1016 cm-3 and 7×1016 cm-3, respectively. 
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Fig. 4. EF distribution at 3.3 kV of: (a) Planar, (b) Planar-SSJ and (c) Trench-SSJ MOSFETs. 
A high doping concentration of the p-implant increases the EF at the bottom of the trench, leading 

to breakdown, with the n-top layer (QN) remaining under-compensated at the surface. On the other 
hand, a lighter p-implant doping concentration increases the EF at the surface. As a result of the higher 
n-top doping concentration compared to the JFET doping in the planar MOSFET, this causes 
premature avalanche breakdown and a significant increase in the gate-oxide EF, the n-top layer at the 
surface is over-compensated. The maximum blocking voltage for angles α < 90 degrees is achieved 
when the EF along the Y-axis (cutline AA' in Fig. 1) in the semi-SJ region becomes flatter. According 
to [1], in a vertical semi-SJ structure (α = 90 degrees), a perfectly rectangular EF distribution indicates 
a charge-balanced condition. As illustrated in Fig. 3 (a), the BV of the Planar-SSJ is 4210 V and 
Trench-SSJ is 4285 V, when the peak side-wall doping concentration is 8.5×1017 cm-3 and 
7×1017 cm- 3, respectively. 

The EF distribution for all three designs can be seen in Fig. 4, where the side-wall doping 
concentration is 8.5×1017 cm-3 and 7×1017 cm- 3 for the Planar-SSJ and Trench-SSJ, respectively. The 
higher EF at the bottom of the deep trench occurs in Planar-SSJ design, resulting in a poorer off-state 
performance compared to the Trench-SSJ. The n-top layer in the Planar-SSJ design is 
overcompensated and the narrower distance between deep trenches of the Trench-SSJ design, 1.1 µm 
compared to 1.9 µm in Planar-SSJ structure, improves the charge balance, resulting in a higher off-
state performance and wider implantation window (see Fig. 3 (a)). Additionally, the gate-oxide EF 
through the cutline AA’ (denoted in Fig. 1) at 3.3 kV is 1.8 MV/cm, 2.1 MV/cm and 0.9 MV/cm for 
the planar, Planar-SSJ and Trench-SSJ MOSFET, respectively. 

  
Fig. 5. (a) BV versus p-implantation doping concentration for Trench-SSJ with trench angle of 80 
and 85-degrees; Trench-SSJ EF distribution recorded at 3.3 kV: (b) 80-degree trench angle 
(7×1017 cm- 3) and (c) 85-degree trench angle (5.5×1017 cm- 3). 
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Increasing the trench angle to 85 degrees, while maintaining the same trench opening (1.5 µm – 
half-cell), improves charge balance and increases the ideal BV (see Fig. 5 (a)). The EF distribution in 
Fig. 5 (b) and (c) is more uniform with the 85-degree angle and shows better charge balance across 
the semi-SJ region. This results in a maximum BV of 4389 V, when the peak side-wall doping 
concentration is 5.5×10¹⁷ cm⁻³. Additionally, the EF at the bottom of the deep trench is reduced, 
lowering the EF in the deep trench oxide, which will positively impact long-term reliability. However, 
the 85-degree trench angle increases the JFET effect, resulting in a higher RON,SP in the trench-SSJ 
configuration (from 7.0 mΩ.cm² to 8.2 mΩ.cm²). The on-state resistance can be reduced by narrowing 
the deep trench opening, but this adjustment may lead to un-implanted trench corners due to 
implantation angle geometry [2,3]. 

The performance of both Planar-SSJ and Trench-SSJ with trench angle (α) of 80 and 85-degrees 
designs, compared to the conventional planar MOSFET, is summarized in Table 1.  

Table1. Static performance comparison between conventional and SSJ designs. 

Structure: α 
[degrees] 

RON,SP 

[mΩ.cm2] 
Gate-oxide EF 

[MV/cm] 
Implantation 

window [cm-3] 
Max BV 

[V] 

Planar - 14.5 
(-) 

1.8 
(-) - 4030 

Planar-SSJ 80 7.5 
(- 48 %) 

2.1 
(+ 16.5 %) 8 – 9 ×10¹⁷ 4210 

(+ 4.5 %) 

Trench-SSJ 80 7.0 
(- 52 %) 

0.9 
(- 50 %) 6.5 – 8 ×10¹⁷ 4285 

(+ 6 %)  

Trench-SSJ 85 8.2 
(- 43.5 %) 

0.9 
(- 50 %) 5 – 7 ×10¹⁷ 4390 

(+ 9 %) 

Conclusion 
In 3.3 kV SiC MOSFET devices, high on-state resistance is primarily due to the low drift doping 

concentration and thick drift region. The semi-SJ method discussed in this study, involves side-wall 
implantation and silicon oxide trench refill, which is a cost-effective solution that requires only two 
additional steps beyond the conventional planar or trench MOSFET process flow. This study 
demonstrates that the Planar Semi-SJ MOSFET (Planar-SSJ) reduces RON,SP from 14.5 mΩ.cm² to 
7.5 mΩ.cm² (a 48 % reduction) and improves the maximum blocking voltage from 4030 V to 4210 V 
(a 4.5 % increase) , compared to the conventional planar MOSFET. The Trench Semi-SJ MOSFET 
(Trench-SSJ) further reduces  to 7.0 mΩ.cm² (a 52 % reduction) and improves the maximum blocking 
voltage to 4285 V (a 6 % increase), if the trench angle is 80-degrees. Reduction of the trench angle 
to 85-degrees has the trade-off between RON,SP (8.2 mΩ.cm²) and maximum BV (4390 V).  
Additionally, both 80-degree and 85-degree Trench-SSJ designs show a lower gate-oxide electric 
field compared to the conventional and Planar-SSJ structures, which could enhance long-term 
reliability without a significant compromise on the on-state performance. 
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