The Effect of Damping on the Non-Linear Dynamic Behaviour of a Cracked Beam at Resonance and Super-Resonance Vibrations

Abstract:

Article Preview

Info:

Periodical:

Key Engineering Materials (Volumes 245-246)

Edited by:

J.M. Dulieu-Barton, M.J. Brennan, K.M. Holford and K. Worden

Pages:

97-106

Citation:

A.P. Bovsunovsky et al., "The Effect of Damping on the Non-Linear Dynamic Behaviour of a Cracked Beam at Resonance and Super-Resonance Vibrations", Key Engineering Materials, Vols. 245-246, pp. 97-106, 2003

Online since:

July 2003

Export:

Price:

$38.00

[1] Zastrau B. Vibration of Cracked Structures. Archive of Mechanics, 1985, 37(6), 731-743.

[2] Wong C.W., Zhang W.S., Lau S.L. Periodic Forced Vibration of Unsymmetrical Piecewiselinear Systems by Incremental Harmonic Balance Method. J. of Sound and Vibration, 1991, 149(1), 91-105.

DOI: https://doi.org/10.1016/0022-460x(91)90913-5

[3] Maezawa S., Furukawa S. Superharmonic Resonance in PiecewiseLinear System. Bulletin of JSME, 1973, 16(96), 931-941.

DOI: https://doi.org/10.1299/jsme1958.16.931

[4] Prime M.B., Shevitz D.W. Linear and Non-Linear Methods for Detecting Cracks in Beams. Proc. of the 14th IMAC, Dearbon, Michigan, 2, 1996, 1437-1443.

[5] Ruotolo R., Surace C., Crespo P., Storer D. Harmonic Analysis of the Vibrations of a Cantilevered Beam with a Closing Crack. Computers & Structures, 1996, 61(6), 1057-1074.

DOI: https://doi.org/10.1016/0045-7949(96)00184-8

[6] Pugno N., Ruotolo R., Surace C. Evaluation of the Non-Linear Dynamic Response to Harmonic Excitation of a Beam with Several Breathing Cracks. J. of Sound and Vibration, 2000, 235(5), 749-762.

DOI: https://doi.org/10.1006/jsvi.2000.2980

[7] Tsyfansky S.L., Beresnevich V.I. Detection of Fatigue Cracks in Flexible Geometrically Non-Linear Bars by Vibration Monitoring. J. of Sound and Vibration, 1998, 213(1), 159168.

DOI: https://doi.org/10.1006/jsvi.1998.1502

[8] Bovsunovskii A.P. Vibrations of a Nonlinear Mechanical System Simulating a Cracked Body. Strength of Materials, 2001, 33(4), 370-379.

[9] Imregun M., Sanliturk K.Y. Natural Frequency and Damping Changes Produced by Fatigue Cracks. Proc. of the 15 th Int. Seminar on Modal Analysis, Leuven, Belgium, 19-21 Sept. 1990: 791−805.

[10] Jendoubi K., Ranganathan N., Merah N. Effect of Thickness on Elasto-Plastic Deformation and Hysteresis Energy Dissipated at Crack Tip. J. of Testing and Evaluation 1991; 19(3): 201-209.

DOI: https://doi.org/10.1520/jte12557j

[11] Rytter A., Brincker R., Kirkegaard P.H. An Experimental Study of the Modal Parameters of a Cantilever. Fracture & Dynamics, Paper No. 37, Department of Building Technology and Structural Engineering, University of Aalborg, Denmark, 1992: 76 p.

[12] Bovsunovsky A.P. Comparative Analysis of Sensitivity of Vibration Damage Indicators by the Results of Laboratory Tests. Proc. of the 17 th IMAC, Kissimmee, Florida, USA, 8−11 February, 1999; 2: 1909-(1915).

[13] Bathe K. -J., Gracewski S. On Nonlinear Dynamic Analysis Using Substructuring and Mode Superposition, Computer & Structures, 1981, 13, pp.699-707.

DOI: https://doi.org/10.1016/0045-7949(81)90032-8

[14] Bovsunovsky A.P. The Mechanisms of Energy Dissipation in the Non-propagating Fatigue Cracks in Metallic Materials. Engineering Fracture Mechanics, 2003 (to be published).

DOI: https://doi.org/10.1016/s0013-7944(04)00038-4

[15] Stress Intensity Factors Handbook. In 3 vol. Vol. I. - (Editor-in-chif Y. Murakami), The Society of Materials Sci., Japan and Pergamon Press, (1987).

Fetching data from Crossref.
This may take some time to load.