Fracture Behaviors of Multi-Crack in Rock-Like Material

Abstract:

Article Preview

Multi-crack problems are deeply involved in rock-like material and rock engineering. In order to study the influences of lateral stress and inclined crack angle on the failure load of the multi-cracked body, uniaxial and biaxial compression fracture tests are conducted on plate specimens with regular distributed multi-cracks. The stress distribution and the stress intensity factors KI and KII for every crack tips of the specimens are calculated by FEM. The experiment revealed that the failure load of the multi-cracked specimens increase obviously with the increase of the lateral pressure σ2 and the inclined crack angle α. And the multi-cracked specimens will hardly initiate propagation under equal biaxial compression. Analyses have been shown that these can be explained by the variation of KII with the σ2 and the α.

Info:

Periodical:

Key Engineering Materials (Volumes 261-263)

Edited by:

Kikuo Kishimoto, Masanori Kikuchi, Tetsuo Shoji and Masumi Saka

Pages:

1523-1528

DOI:

10.4028/www.scientific.net/KEM.261-263.1523

Citation:

L. Y. Li et al., "Fracture Behaviors of Multi-Crack in Rock-Like Material", Key Engineering Materials, Vols. 261-263, pp. 1523-1528, 2004

Online since:

April 2004

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.