Magnetostrictive Terfenol-D Material Linear Simulation Using a Coupled FE-BEM


Article Preview

This paper describes the application of the coupled FE-BEM (finite element-boundary element method) for the numerical harmonic analysis of the linear dynamic behaviour of a magnetostrictive Terfenol-D rod in water. The magnetostrictive rod is three-dimensionally modeled to transduce applied electric current in a helical coil around the rod to mechanical displacement. The steady-state resonance response of the displacement is shown.



Key Engineering Materials (Volumes 261-263)

Edited by:

Kikuo Kishimoto, Masanori Kikuchi, Tetsuo Shoji and Masumi Saka




S. S. Jarng et al., "Magnetostrictive Terfenol-D Material Linear Simulation Using a Coupled FE-BEM", Key Engineering Materials, Vols. 261-263, pp. 555-560, 2004

Online since:

April 2004




[1] J.L. Butler, Application Manual for the Design of ETREMA TERFENOL-D Magnetostrictive Transducers, ETREMA Products, Inc., Subsidary of EDGE Technology, Inc. (1988).

[2] A.E. Clark., Magnetostrictive Rare Earth Fe2 Compounds, Ferromagnetic Materials, Edited by E.P. Wohlfarth, North-Holland Pub., 1 (1980) Chapter7, pp.220-256.

[3] D. Boucher, Trends and Problems in Low Frequency Sonar Projectors Design, In Power Sonic and UltrasonicTransducers Design, Ed. B. Hamonic and J.N. Decarpigny, Springer-Verlag Pub., (1988) pp.100-133.


[4] D.F. Jones and J.F. Lindberg, Recent Transduction Developments in Canada and the United States, Proc. of the Institute of Acoustics, 17, Pt. 3, (1995) P. 15-33.

[5] F. Claeyssen, Conception et Realisation de Transducteurs Sonar Basse Frequence a Base D'alliages Magnetostrictifs Terres Rares-Fer (Design and Assembling of Low Frequency Sonar Transducers Using Magnetostrictive Rare Earth Alloys), Th'ese de Doctorat en Electronique, Thesis No. 89 ISAL 0065, INSA Lyon Fr., in French (1989).

[6] E.H. Benbouzid, L. Kvarnsjo, G. Engdahl, Dynamic Modeling of Giant Magnetostriction in Terfenol-D Rods by the Finite Element Method, IEEE Trans. on Mag., 31, No. 3, (1995) P. 1821-1824.


[7] L. Kvarnsjo ,G. Engdahl , Nonlinear 2-D Transient Modeling of Terfenol-D rods, IEEE Trans. on Mag., 27, No. 6, (1991) P. 5349-5351.


[8] F. Claeyssen ,D. Boucher ,K. Anifrani ,R. Bossut and J.N. Decarpigny , Analysis of Magnetostrictive Transducers by the ATILA Finite Element Code, J. Acoust. Soc. Am., 85 (1989) Sup. 1, LL4, S90.


[9] B. Hamonic, J.C. Debus, J.N. Cecarpigny, Proceedings of the International Workshop on ATILA, Ed. COMES, Lille, (1990).

[10] ATILA Finite-Element Code for Piezoelectric and Magnetostrictive Transducer Modeling Vesion 5. 03 User's Manual, Edited by Acoustics Laboratory, Institut Sup'erieur d'Electronique du Nord, Published by MAGSOFT Co., Sep. (1993).

[11] D.A. Berlincourt, D.R. Curran. and H. Jaffe , Piezoelectric and Piezomagnetic Materials, Physical Acoustics, Ed. W.P. Mason, Academic Press, (1964) Chapter 3, P. 150-182.

[12] O.C. Zienkiewicz., Three Dimensional Magnetic Field Determination using a Scalar Potential – a Finite Element Solution, IEEE Trans. on Mag., 13, (1977) P. 1649-1656.


[13] J.B. Marion and W.F. Hornyak, Physics for Science and Engineering: Sources of Magnetic Fields, Holt_Saunders International Editions, (1982) P. 919-938.

[14] P.P. Silvester and R.L. Ferrari Finite Elements for Electrical Engineers, Cambridge University Press, (1983) P. 163-165.