Parametric Study on Compression Deformation Behavior of Conformal Load-Bearing Smart Skin Antenna Structure

Abstract:

Article Preview

In this paper, a simple conformal load-bearing antenna structure smart skin with a multi-layer sandwich structure composed of carbon/epoxy, glass/epoxy, and a dielectric polymer was designed and fabricated. The mechanical properties of each material in the designed smart skin were obtained from experiments. Tests and analyses were conducted to study the behavior of the smart skin under compressive loads. The designed smart skin failed due to buckling before compression failure. The stresses of each layer and the first failed layer of the smart skin were predicted using MSC/NASTRAN. The finite element model was verified by comparing the numerical results from geometrical linear/nonlinear analyses with the measured data. The numerically predicted structural behavior of the smart skin agreed well with the experimental data. The results showed that the carbon/epoxy layer took charge of most of the compressive load, and the first failure occurred in the dielectric layer while the other layers remained safe. A numerical model was used to obtain design data from the parametric study. The effect of changing the design variables on the buckling and compressive behavior of the smart skin was also investigated. As a result, it was confirmed that the transverse shear moduli of the honeycomb core had a serious impact on the buckling load of the smart skin when the shear deformation was considerable.

Info:

Periodical:

Key Engineering Materials (Volumes 261-263)

Edited by:

Kikuo Kishimoto, Masanori Kikuchi, Tetsuo Shoji and Masumi Saka

Pages:

663-668

DOI:

10.4028/www.scientific.net/KEM.261-263.663

Citation:

K. J. Yoon et al., "Parametric Study on Compression Deformation Behavior of Conformal Load-Bearing Smart Skin Antenna Structure", Key Engineering Materials, Vols. 261-263, pp. 663-668, 2004

Online since:

April 2004

Export:

Price:

$35.00

In order to see related information, you need to Login.