Shape Optimization in Laminated Composite Plates by Growth-Strain Method, Part Two - Stress Control

Abstract:

Article Preview

Stress control of the growth-strain method was applied to shape optimization of multiple cutouts in laminated composite plates. Since the growth-strain method optimizes a shape by generating the bulk strain to make the distributed parameter uniform, the distributed parameter was chosen as Tsai-Hill value, as volume control of the growth-strain method. In this study, of particular interest is to see whether stress control of the growth-strain method developed for shape optimization in isotropic media would work for laminated composite plates. The shapes optimized by Tsai-Hill fracture index were compared with those of the initial shapes for the various load conditions. As a result, it was verified that stress control of the growth-strain method also worked very well for multiple cutouts optimization in laminated composite plates.

Info:

Periodical:

Key Engineering Materials (Volumes 261-263)

Edited by:

Kikuo Kishimoto, Masanori Kikuchi, Tetsuo Shoji and Masumi Saka

Pages:

839-844

DOI:

10.4028/www.scientific.net/KEM.261-263.839

Citation:

S. Y. Han et al., "Shape Optimization in Laminated Composite Plates by Growth-Strain Method, Part Two - Stress Control", Key Engineering Materials, Vols. 261-263, pp. 839-844, 2004

Online since:

April 2004

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.