Mechanical Properties and Microstructure of Al2O3-Ti3SiC2 Ceramic Composites

Abstract:

Article Preview

Info:

Periodical:

Key Engineering Materials (Volumes 264-268)

Main Theme:

Edited by:

Hasan Mandal and Lütfi Öveçoglu

Pages:

1029-1034

Citation:

W. Pan et al., "Mechanical Properties and Microstructure of Al2O3-Ti3SiC2 Ceramic Composites ", Key Engineering Materials, Vols. 264-268, pp. 1029-1034, 2004

Online since:

May 2004

Keywords:

Export:

Price:

$38.00

[1] G. G. Deely, J. M. Herbert and N. C. Moore, Powder Metall., 1961, 8, 145.

[2] G. E. Gazza, J. Am. Ceram. Soc., 1973, 56, 662.

[3] Y. Hamano, Silicon-Based Structural ceramics, Edited by Brian W. Sheldon and Stephen C., G. Danforth, Ceramic transactions Vol. 42, Am. Ceram. Soc. P3.

[4] C. K. Chyung, G. H. Beall, and D. G. Grossman, Proc. Int. Glass Congr., 10 th , 1974, 33.

[5] N. Martin, N. M. Jedynakiewicz, Dental Materials, 1999, 15, 54.

[6] M. Taira, M. Yamaki, J. Mater. Sci. Lett. 1994, 13, 480.

[7] T. Tanimoto, T. Morii, M. Okumura, A. Nakazawa, G. Suganuma, G. Sasaki, and K. Niihara, Proceedings of 1st International Symposium on Science of Engineering Ceramics. Edited by s. kimura and k. Niihara. The Ceram. Soc. Jpn, Tokyo, Japan, 1991, 419.

[8] M. W. Barsoum and T. El-Raghy, J. Am. Ceram. Soc., 1996, 79, (1953).

[9] Janet B., David B. Marshall, Robert M. Housley, and Peter E. D. Morgan, J. Am. Ceram. Soc., 1998, 81, 2169.

[10] N. P. Padture, C. j. Evans, H. H. K. Xu, and B. R. Lawn, J. Am. Ceram. Soc., 1995, 78, 215.

[11] R. Uchiyama and T. Kawamami, New Ceramics, 1988, 65(1n Japanese).

[12] M. Low, S. K. Lee, B. Lawn, and M. W. Barsoum, J. Am. Ceram. Soc., 1998, 81, 225.

[13] T. Goto and T. Harai, Mater. Res. Bull., 1987, 22, 1195.

[14] C. Racault, F. Langlais, and r. Naslain, J. Mater. Sci. 29 (1994) 3384.

[15] N.P. Padture, S.J. Bennison and H.M. Chan, ibid., 1993, 76, 2312.

[16] J. L. Runyan and S. J. Bennison, J. Eur. Ceram. Soc., 1991, 7, 93.

[17] L.M. Braun, S. J. Bennison and B. R. Lawn, J. Amer. Ceram. Soc., 1992, 75, 3049.

10 20 30 40 50 60 70 80.

200 400 600 800 20wt% Ti3SiC2 Fig. 1. XRD pattern of the Al2O3-20wt. %Ti3SiC2 composite. ■-Ti3SiC2; ●-Al2O3.

20 40 60 80 100 3. 8 4. 0 4. 2 4. 4 4. 6 4. 8.

20 40 60 80 100 3. 8 4. 0 4. 2 4. 4 4. 6 4. 8.

20 40 60 80 100 3. 8 4. 0 4. 2 4. 4 4. 6 4. 8 1623K 1673K Density(g/cm3 ) Ti3SiC2(wt. %) 1573K Fig. 2. Relationship between relative density or density and weight fraction of Ti3SiC2 in Al2O3-Ti3SiC2 composites.

20 40 60 80 100.

[4] [8] [12] [16] [20] [0] 20 40 60 80 100.

[4] [8] [12] [16] [20] [0] 20 40 60 80 100.

[4] [8] [12] [16] [20] Hardness Hv( GPa) 1673K 1623K 1573K Ti3SiC2(wt. %) Fig. 3. Relationship between Vickers hardness and weight fraction of Ti3SiC2 in Al2O3-Ti3SiC2 composites.

20 40 60 80 100 200 400 600 800 1673K 1623K 1573K Bending strength(MPa) Ti3SiC2 (wt. %) Fig. 4. Relationship between bending strength and weight fraction of Ti3SiC2 in Al2O3-Ti3SiC2 composites.

20 40 60.

[2] [4] [6] [8] [10] Sintered at 1673 K Fracture toughnss (MPa. m 1/2 ) Ti3SiC2 ( wt% ) Fig. 5. Relationship between fracture toughness and weight fraction of Ti3SiC2 in Al2O3-Ti3SiC2 composites (a) (b) (c) (d) (e) (f) Fig. 6. SEM photographs of the fracture surface in Al2O3-Ti3SiC2 composition with (a) 0; (b)20; (c) 40; (d) 60; (e) 80; (f) 100 wt% Ti3SiC2.

DOI: https://doi.org/10.1016/s0272-8842(02)00199-2

Fetching data from Crossref.
This may take some time to load.