Characterization of Zirconium Diboride for Thermal Protection Systems

Abstract:

Article Preview

Info:

Periodical:

Key Engineering Materials (Volumes 264-268)

Main Theme:

Edited by:

Hasan Mandal and Lütfi Öveçoglu

Pages:

493-496

Citation:

A.L. Chamberlain et al., "Characterization of Zirconium Diboride for Thermal Protection Systems", Key Engineering Materials, Vols. 264-268, pp. 493-496, 2004

Online since:

May 2004

Export:

Price:

$38.00

[1] D. Kontinos, K. Gee and D. Prabhu, Temperature Constraints at the Sharp Leading Edge of a Crew Transfer Vehicle, 35th AIAA Thermophysics Conf., 11-14 June 2001, Anaheim CA.

DOI: https://doi.org/10.2514/6.2001-2886

[2] W.L. Vaughn and H.G. Maahs, Active-to-Passive Transition in the Oxidation of Silicon Carbide and Silicon Nitride in Air, J. Am. Ceram. Soc., 73.

[6] 1540-43 (1990).

[3] B. Schneider, A. Guette, R. Naslain, M. Cataldi, and A. Costecalde, A Theoretical and Experimental Approach to the Active-to-Passive Transition in the Oxidation of Silicon Carbide, J. Mat. Sci., 33.

[2] 535-47 (1998).

[4] E. Clougherty, R. Hill, W. Rhodes, and E. Peters. Research and Development of Refractory Oxidation-Resistant Diborides, Part II, Vol. II: Processing and Characterization, Technical Report No. AFML-TR-68-190.

DOI: https://doi.org/10.21236/ad0865321

[5] "High Temperature Oxidation Exposure Testing of Non-Oxide Advanced Ceramics at Atmospheric Pressure and Low Gas Velocities, studies under consideration by ASTM C-28.

[6] S. Maloy, A.H. Heuer, J. Lewandowski, and J. Petrovic, Carbon Additions to Molybdenum Disilicide: Improved High Temperature Mechanical Properties, J. Am. Ceram. Soc., 74.

DOI: https://doi.org/10.1002/chin.199203278

[10] 2704-706 (1991).

[7] T. Ohji, Y.K. Jeong, Y.H. Choa, K. Niihara, Strengthening and Toughening Mechanism of Ceramic Nanocomposites, Journal of the American Ceramic Society, 81.

DOI: https://doi.org/10.1111/j.1151-2916.1998.tb02503.x

[6] 1453-60 (1998). (a) (b) (c) (d) (e) (f) (g) Oxide Layer Oxide Layer (a) (b).