Detection of Low Cycle Fatigue in Type 316 Stainless Steel Using HTS-SQUID


Article Preview



Key Engineering Materials (Volumes 270-273)

Edited by:

Seung-Seok Lee, Dong-Jin Yoon, Joon-Hyun Lee and Sekyung Lee




D.G. Park et al., "Detection of Low Cycle Fatigue in Type 316 Stainless Steel Using HTS-SQUID", Key Engineering Materials, Vols. 270-273, pp. 1224-1228, 2004

Online since:

August 2004




[1] T. Ryhanen and H. Seppa, J. of Low Temp. Phys., Vol. 76, (5/6), (1989) p.287.

[2] D.G. Park, D.W. kim, J.H. Hong, V.P. Timofeev, C.G. Kim, J. Mag. Mag. Mat., Vol. 215-216 (2000) p.785.

[3] N. Maeda, M. Otaka, S. Shimizu, Int. J. Pres. Ves. & Piping Vol. 71 (1997) p.13.

[4] J.W. Simmons, Mater. Sci. Eng. Vol. A207 (1996) p.159.

[5] J.B. Vogt, J. Foct, C. Regnard, C. Robert, H. Dhers, Metall. Trans. Vol. 22A (1991) p.2385.

[6] D.W. Kim, W.S. Ryu, J.H. Hong, S.K. Choi, J. Mater. Sci. Vol. 33 (1998) p.675.

[7] B. D. Cullity, Introduction to Magnetic Materials, Addition-Wesley Pub., 1972, p.351.

[8] R.E. Reed-Hill, Physical metallurgy Principles, PWS-KENT Pub., 1992, p.510.

[9] K. Yamaguchi, K. Kanazawa, Metall. Trans. Vol. 11 (1980) p.1691.

[10] Dae Whan kim, Woo Gon Kim, Woo-Seog Ryu, Int. J. Fatigue, (2003), To be Published.

[11] T. Suzuki, K. Hirano, ECF 12-Fracture from Defects, p.97.