A Nonlinear Finite Element Method for Ferroelectric Structures with Hysteresis


Article Preview



Key Engineering Materials (Volumes 274-276)

Edited by:

W.P. Shen and J.Q. Xu




R. Y. Huang and C. C. Wu, "A Nonlinear Finite Element Method for Ferroelectric Structures with Hysteresis", Key Engineering Materials, Vols. 274-276, pp. 685-690, 2004

Online since:

October 2004




[1] A. C. F. Cock, R. M. McMeeking: A phenomenological constitutive law for the behavior of ferroelectric ceramics. Ferroelectric, 1999, 228: 219-228.

[2] J. E. Huber, N. A. Fleck: Multi-axial electrical switching of a ferroelectric: theory versus experiment. Journal of them Mechanics and Physics of Solids, 2001, 49: 785-811.

DOI: https://doi.org/10.1016/s0022-5096(00)00052-1

[3] R. M. McMeeking, C. M. Landis: A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics. International J Engineering Science, 2002, 40(14): 1553-1577.

DOI: https://doi.org/10.1016/s0020-7225(02)00033-2

[4] W. X. Zhong, R. L. Zhang: Parametric variational principle and their quadratic programming solutions in plasticity. Computer s & Structures, 1988, 30(4): 887-896.

DOI: https://doi.org/10.1016/0045-7949(88)90122-8

[5] C. M. Lanids: A new finite-element formulation for electromechanical boundary value problems. Int. J. Numer. Meth. Engng., 2002, 55: 613-628.

DOI: https://doi.org/10.1002/nme.518