Web Image Classification Using an Optimized Feature Set

Abstract:

Article Preview

Redundant images currently abundant in World Wide Web pages need to be removed in order to transform or simplify the Web pages for suitable display in small-screened devices. Classifying removable images on the Web pages according to their uniqueness of content will allow simpler representation of Web pages. For such classification, machine learning based methods can be used to categorize images into two groups; eliminable and non-eliminable. We use two representative learning methods, the Naïve Bayesian classifier and C4.5 decision trees. For our Web image classification, we propose new features that have expressive power for Web images to be classified. We apply image samples to the two classifiers and analyze the results. In addition, we propose an algorithm to construct an optimized subset from a whole feature set, which includes most influential features for the purposes of classification. By using the optimized feature set, the accuracy of classification is found to improve markedly.

Info:

Periodical:

Key Engineering Materials (Volumes 277-279)

Edited by:

Kwang Hwa Chung, Yong Hyeon Shin, Sue-Nie Park, Hyun Sook Cho, Soon-Ae Yoo, Byung Joo Min, Hyo-Suk Lim and Kyung Hwa Yoo

Pages:

361-368

DOI:

10.4028/www.scientific.net/KEM.277-279.361

Citation:

S. S. Cho et al., "Web Image Classification Using an Optimized Feature Set", Key Engineering Materials, Vols. 277-279, pp. 361-368, 2005

Online since:

January 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.