Energy Minimization Model for Pattern Extraction of the Movement Behavior of Animals

Abstract:

Article Preview

Recently, patterning and analyzing complex data of behaviors of animals in response to external stimuli such as toxic chemicals has become focus of attentions. In this paper, an energy minimization model to extract the features of response behavior of chironomids under toxic treatment is proposed, which is applied on the image of velocity vectors. The model is based on the improved active contour model and the variation of the energy values produced by the evolving active contour. We attempt to implement an adaptive computational method to characterize the changes in response behaviors of chironomids after treatment with an insecticide, diazinon. Active contour is formed around each collection of velocities to gradually evolve to find the optimal boundaries of velocity collections through processes of energy minimization. The energy minimization model effectively reveals characteristic patterns of behavior for the treatment versus no treatment, and identifies changes in behavioral states as the time progressed.

Info:

Periodical:

Key Engineering Materials (Volumes 277-279)

Edited by:

Kwang Hwa Chung, Yong Hyeon Shin, Sue-Nie Park, Hyun Sook Cho, Soon-Ae Yoo, Byung Joo Min, Hyo-Suk Lim and Kyung Hwa Yoo

Pages:

589-594

DOI:

10.4028/www.scientific.net/KEM.277-279.589

Citation:

J. S. Kang et al., "Energy Minimization Model for Pattern Extraction of the Movement Behavior of Animals", Key Engineering Materials, Vols. 277-279, pp. 589-594, 2005

Online since:

January 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.