Structural Properties of Potassium Encapsulated in Carbon Nanotubes

Abstract:

Article Preview

We have investigated structural phases of potassium in carbon nanotubes using a structural optimization process applied to an atomistic simulation method. As the radius of the carbon nanotubes is increased, various structural phases ranging from an atomic strand to multi-shell packs composed of coaxial cylindrical shells and helical, layered, and crystalline structures are found to emerge. Numbers of helical atom rows composed of coaxial tubes and orthogonal vectors of a circular rolling of a triangular network can explain multi-shell phases of potassium in carbon nanotubes.

Info:

Periodical:

Key Engineering Materials (Volumes 277-279)

Edited by:

Kwang Hwa Chung, Yong Hyeon Shin, Sue-Nie Park, Hyun Sook Cho, Soon-Ae Yoo, Byung Joo Min, Hyo-Suk Lim and Kyung Hwa Yoo

Pages:

919-928

DOI:

10.4028/www.scientific.net/KEM.277-279.919

Citation:

M. Y. Lee et al., "Structural Properties of Potassium Encapsulated in Carbon Nanotubes", Key Engineering Materials, Vols. 277-279, pp. 919-928, 2005

Online since:

January 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.