Sonochemical Synthesis of Silicon Nanocrystals

Abstract:

Article Preview

Silicon nanocrystals in a range from 2 nm to 5 nm were prepared from Zintl salt, soldium silicide (NaSi) by sonochemical method. This synthesis permits that the reaction be completed in only a few hours and the easy alkyl-modification of nanocrystals surface at room temperature and ambient pressure. The average size of nanocrystals measured by the dynamic light scattering analysis was 2.7 nm. The high-resolution transmission electron micrograph confirmed the material identity of nanocrystals as crystalline silicon. FT-IR spectra are consistent with the surface states of nanocrystals that are chlorine-or butyl-capped. The emission peak center moved to a longer wavelength (up to 430 nm) with the reaction time, under a 325 nm excitation.

Info:

Periodical:

Key Engineering Materials (Volumes 277-279)

Edited by:

Kwang Hwa Chung, Yong Hyeon Shin, Sue-Nie Park, Hyun Sook Cho, Soon-Ae Yoo, Byung Joo Min, Hyo-Suk Lim and Kyung Hwa Yoo

Pages:

995-999

Citation:

S. J. Lee et al., "Sonochemical Synthesis of Silicon Nanocrystals", Key Engineering Materials, Vols. 277-279, pp. 995-999, 2005

Online since:

January 2005

Export:

Price:

$38.00

[1] L. T. Canham: Appl. Phys. Lett. Vol. 57 (1990), p.1046.

[2] G. Belomoin, J. Therrien and M. Nayfeh: Appl. Phys. Lett. Vol. 77 (2000), p.779.

[3] L. T. Canham: Nature Vol. 408 (2000), p.411.

[4] L. Pavesi, N. D. Negro, G. Franzò and F. Priolo: Nature Vol. 408 (2000), p.440.

[5] (a) K. A. Littau, P. J. Szajowski, A. J. Muller, A. R. Kortan and L. E. Brus: J. Phys. Chem. Vol. 97 (1993).

[6] T. Seto, Y. Kaqakami, N. Suzuki, M. Hirasawa and N. Aya: Nano Lett. Vol. 1 (2001), 1, p.315.

[7] K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma and A. Polman: Appl. Phys. Lett. Vol. 69 (1996), p. (2033).

[8] J. R. Heath: Science Vol. 258 (1992), p.1131.

[9] N. A. Dhas, C. P. Ray and A. Gedanken: Chem. Mater. Vol. 10 (1998), p.3278.

[10] R. A. Bley and S. M. Kauzlarich: J. Am. Chem. Soc. Vol. 118 (1996), p.12461.

[11] C. -S. Yang, R. A. Bley, S. M. Kauzlarich, H. W. H. Lee and G. R. Delgado: J. Am. Chem. Soc. Vol. 121 (1999), p.5191.

[12] C. Delerue, G. Allan and M. Lannoo: Phys. Rev. B Vol. 48 (1993), p.11024.

[13] G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn and V. Paillard: Phys. Rev. B. Vol. 62 (2000), p.15942.

DOI: https://doi.org/10.1103/physrevb.62.15942

[14] A. J. Kontkiewicz, A. M. Kontkiewicz, S. S. Siejka, G. Nowak and A. M. Hoff: Appl. Phys. Lett. Vol. 65 (1994), p.1436.

[15] J. Vasiliev, J. Chelikowsky and R. M. Martin: Phy. Rev. B. Vol. 65 (2002), p.121302.

[16] G. Ledoux, J. Gong and F. Huisken: Appl. Phys. Lett. Vol. 79 (2001), p.4028.

[17] M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan and C. Delerue: Phys. Rev. Lett. Vol. 82 (1998), p.197.

Fetching data from Crossref.
This may take some time to load.