Bending Creep and Stress Relaxation of Ti3AlC2 at High Temperature

Abstract:

Article Preview

Creep and stress relaxation of Ti3AlC2 were investigated using three-point bending tests at 800-1200°C under various load levels. The results show that the creep rate significantly increases with increasing temperature in the rang of 1000-1200°C. Subcritical crack growth during the creep process was found to be the main failure mechanism, i.e., the stress intensity factor increases with the creep-induced crack growth and results in the ultimate fracture. The lower limit of stress relaxation was considered as the threshold value of zero-creep stresses, and the ratio of the threshold stress to the applied stress was defined to be a parameter of creep resistance for estimating deformation behavior at high temperature. SEM examination confirmed that the creep failure in Ti3AlC2 was governed by such a damage evolution: cavitation ® crack initiation ® crack extension ® fracture.

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Edited by:

Wei Pan, Jianghong Gong, Chang-Chun Ge and Jing-Feng Li

Pages:

1373-1378

Citation:

Y. W. Bao and Y. C. Zhou, "Bending Creep and Stress Relaxation of Ti3AlC2 at High Temperature", Key Engineering Materials, Vols. 280-283, pp. 1373-1378, 2005

Online since:

February 2007

Export:

Price:

$38.00

[1] N. V. Tzenov and M.W. Barsoum: J. Am. Ceram. Soc. Vol. 83 (2000), p.825.

[2] Y. C. Zhou, X. H. Wang, Z. M. Sun and S. Q. Chen: J. Mater. Chem. Vol. 11( 2001), p.2335.

[3] Y. C. Zhou , Z. M. Sun, X. H. Wang and S. Q. Chen: J. Phys.: Condens. Matter Vol. 13 (2001), p.10001.

[4] X. H. Wang and Y. C. Zhou: J. Mater. Chem. Vol. 12 (2002), p.455.

[5] X. H. Wang and Y. C. Zhou: Acta Mater. Vol. 50 (2002), p.3143.

[6] X. H. Wang and Y. C. Zhou: Corros. Sci. Vol. 45 (2003), p.891.

[7] Q. Jin, D. S. Wilkinson, and G. C. Weatherly: J. Am. Ceram. Soc. Vol. 82 (1999), p.1492.

[8] N. Kondo, Y. Suzuki, M. E. Brito, and T. Ohji: J. Mater. Res. Vol. 16 (2001), p.2182.

[9] D. R. Clarke: J. Am. Ceram. Soc Vol. 70 ( 1987), p.15.

[10] M. Radovic, M.W. Barsoum, T. El-Raghy, S. Wiederhorn: Acta Mater. Vol. 49 ( 2001), p.4103.

[11] D. Josell, T. P. Weihs and H. Gao: MRS Bulletin, Jan. (2002) p.39.

[12] B. A. Fields and S. M. Wiederhorn, J. Am. Ceram. Soc. Vol. 79 (1996), p.977.

[13] S.M. Wiederhorn, W.E. Luecke, and R.F. Krause, Ceram. Eng. Sci. Proc. Vol. 19 ( 1998), p.65.

[14] D. Munz, and T. Fett, Mechanisches Verhalten Keramischer Werkstoffe. (Springer-Verlag. Berlin, 1989).

DOI: https://doi.org/10.1007/978-3-642-51710-5

[15] Y.W. Bao and Y.C. Zhou, Mater. Lett. Vol. 57 (2003), p.4018.