Thermodynamics and Kinetic Considerations behind the Growth of AlN Whiskers Synthesized by Carbothermal Reduction

Abstract:

Article Preview

AlN whiskers have been successfully synthesized by carbothermal reduction. The thermodynamics and growth kinetics of AlN whiskers were studied at 1600°C using CaCO3 as a catalyst. The research indicated that AlN whiskers are more easily nucleated from the liquid phase than at the surface of solid phase. AlN whiskers are nucleated by VLS mechanism and the liquid, which plays a dominant role in the VLS mechanism, is formed by Al-Ca interphases, such as CaO×2Al2O3 and CaO×6Al2O3. Kinetic studies suggest that the catalyst reacts with Al2O3 to form a low melting point eutectic (1390°C). The liquid phase formed at this low melting point eutectic provides good conditions for nucleation of AlN whiskers. At the synthesis temperature, the liquid phase vaporizes, thus creating suitable conditions for the subsequent growing of whiskers by the VLS mechanism. This growing mechanism conforms to thermodynamics and a lot of proof indicates that screw dislocations play an important role in the process of the whiskers' formation.

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Edited by:

Wei Pan, Jianghong Gong, Chang-Chun Ge and Jing-Feng Li

Pages:

1403-1408

DOI:

10.4028/www.scientific.net/KEM.280-283.1403

Citation:

R. L. Fu et al., "Thermodynamics and Kinetic Considerations behind the Growth of AlN Whiskers Synthesized by Carbothermal Reduction", Key Engineering Materials, Vols. 280-283, pp. 1403-1408, 2005

Online since:

February 2007

Export:

Price:

$35.00

[1] G. A. Slack: J. Phys. Chem. Solids. Vol. 34 (1973), p.32.

[2] W. Werdecker and F. A ldinger: IEEE Trans. Comp., Hybrids Manuf. Technol. Vol. 7 (1984), p.399.

[3] L. M Sheppard: Am. Ceram. Soc. Bull. Vol. 69 (1990), p.1801.

[4] G. A. Slack and T. F. McNELLY: J. Cry. Grow. Vol. 34 (1976), p.263.

[5] J. A, Kohn, Perry G. Cotter and R. A. Potter: American Mineralogist, Vol. 41 (1956), p.355.

[6] T. J. Davies and P. E. Evans: Nature, Vol. 207 (1965), p.254.

[7] W. M. Yim, E. J. Stofko and P. J. Zanzucchi: J. Appl. Phys. Vol. 44 (1973), p.292.

[8] T. Watanabe, N. Hotta and K. Kotera: Austceram 94, Proceeding of the International Ceramics Conference (Australasian Ceramic Society, Sydney, NSW 1994), p.184.

[9] W. G. Miao, Y. Wu and H. P. Zhou: J. Mater. Sci., Vol. 32 (1997), pp. (1969).

[10] H. Zhou, R. Fu, L. Chen and Y. Wu: Acade. Period. Abs. of China Vol. 3 (1997), p.1121.

[11] H. Zhou, R. Fu, L. Chen and H. Chen: Progress of Natural Science Vol. 8 (1998), p.513.

[12] Y. W. Cho and J. A. Charles: Mater. Sci. Tech. Vol. 7 (1991), p.495.

[13] P. Lefort and M. Billy: J. Am. Cera. Soc. Vol. 76 (1993), p.2295.

[14] R. Fu, H. Zhou, L. Chen and Y. Wu: Mater. Sci. Eng. Vol. A266 (1999), p.44.

[15] K. Komeya, I. Kitagawa and T. Meguro: J. Ceram. Soc. Jap. Vol. 102 (1994), p.670.

[16] I. Barin, F. Sauert and E. Schultze-Rhonhof: Thermochemical data of pure substances, second edition (Weinheim, Germany VCH Verlagsgesellschaft mbH, D-6940, Weinheim 1993).

[17] R. S. Roth, T. Negas and L. P. Cook: Phase Diagrams for Ceramists, volume 5 (The American Ceramic Society, INC, New York 1993).

[18] K. Schwerdtfeger and H. G. Schubert: Arch. Eisenhuettenwes Vol. 45 (1974), p.649.

[19] W. K. Burton, N. Cabrera and F. C. Frank: Phil. Royal Soc. Vol. 243 (1950), p.299.

[20] B. Lewis, J. Cry. Grow. Vol. 21 (1974), p.29.

[21] B. Lewis, J. Cry. Grow. Vol. 21 (1974), p.40.

[22] B. Forslund and J. Zheng: J. Mater. Sci. Vol. 28 (1993), p.3132.

[23] R. S. Wagner and W. C. Ellis: Trans. Met. Soc. AIME, Vol. 233 (1965), p.1054.

[24] T. Ide, K. Komeya, T. Meguro and J. Tatami: J. Am. Cream. Soc. Vol. 82 (1999), p.2993.

In order to see related information, you need to Login.