Gelcasting of Mechanochemically Synthesized Hydroxyapatite

Abstract:

Article Preview

Hydroxyapatite powders were prepared via mechanochemical synthesis method. The starting reagents for HAP powders were vibration ball milled for 2 h and then calcined at 800°C for 1 h. X-ray diffraction patterns and IR spectrum shown that pure crystalline apatite powder (HAP) was obtained. The as-synthesized powders were gelcasted and then sintered at 1200°C for 2 h. It was observed from SEM micrographs that the prepared green body has uniform microstructure. The bending strength of the dried green body was as high as 18 MPa that is enough to be machined into required form before sintering. The sintered ceramics has a density of 2.5 g/cm3 and a flexural strength of 72 MPa with a homogenous microstructure.

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Edited by:

Wei Pan, Jianghong Gong, Chang-Chun Ge and Jing-Feng Li

Pages:

1555-1558

Citation:

Y. Jia et al., "Gelcasting of Mechanochemically Synthesized Hydroxyapatite", Key Engineering Materials, Vols. 280-283, pp. 1555-1558, 2005

Online since:

February 2007

Export:

Price:

$38.00

[1] K. Groot: Bioceramics of Calcium Phosphate (CRC Press, Boca Raton, FL, 1983).

[2] L.L. Hench and J. Wilson: An Introduction to Bioceramics (World Scientific, London, 1993).

[3] Y. Shinto, A. Uchida, F. Korkusuz, N. Araki and K. Ono: J. Bone Joint Surg. Vol. 74B (1992), p.600.

[4] C.P.A.T. Klein, J.M.A. Blieck-Hogemrst, J.G.C. Wolket and K. Groot: Biomater. Vol. 11 (1990), p.509.

[5] S. H. Kwon, Y. K. Jun, S. H. Hong, I. S. Lee, H. E. Kim and Y. Y. Won: J. Amer. Ceram. Soc. Vol. 85.

[12] (2002), p.3129.

[6] J.C. Merry, I.R. Gibson, S.M. Best and W. Bonfield: J. Mater. Sci. Mater. Med. Vol. 9 (1998), p.779.

[7] Y. Yubao, C. P. A. T. Klein and J. Wijn: J. Mater. Sci. Mater. Med. Vol. 5 (1994), p.263.

[8] W. Suchanek, M. Yashima, M. Kakihana and M. Yoshimura: Biomaterials Vol. 17 (1996), p.1715.

[9] M. Toriyama and S. Kawamura: Yogyo-Kyokai-shi Vol. 94 (1986), p.1004.

[10] M. Toriyama, A. Ravaglioli, A. Krajewski, C. Galassi, E. Roncari and A. Piancastelli: J. Mater. Sci. Vol. 30 (1995), p.3216.

DOI: https://doi.org/10.1007/bf01209240

[11] A. C. Young, O. O. Omatete, M. A. Janney, and P. A. Menchhofer: J. Am. Cerm. Soc. Vol. 74 (1991), p.612.

[12] R. Gilissen, J. P. Erauw and A. Smolders: Mater. Design Vol. 21 (2000), p.251.

[13] M. D. Vlajic and V. D. Krstic: J. Mat. Sci. Vol. 37 (2002), p.2943.

[14] L. G. Ma, Y. Huang, J. L. Yang, Z. P. Xie, X. L. Xu and J. S. Zhao: J. Mater. Sci. Lett. Vol. 37 (2001), p.2943.

[15] L.M. Rdriguez-Lorenzo, M. Vallet-Regi and J.M.F. Ferreira: Biomaterials Vol. 22 (2001), p.1847.

Fetching data from Crossref.
This may take some time to load.