Structural Assessment of Microsphere-Based Tissue Engineered Scaffold from Poly(Lactic Acid)/ß-Tricalcium Phosphate

Abstract:

Article Preview

The addition of b-tricalcium phosphate improves the biocompatibility and the bioactivity of scaffolds made from poly(lactic acid)(PLA). In this paper, a developed method was used to prepare poly(lactic acid)/ b-tricalcium phosphate microsphere-based tissue engineered scaffolds. It was found that the porosity and the compressive modulus of the scaffolds increased with increasing stirring time. The PLA scaffolds with a higher strength and porosity could be obtained under the optimum conditions (i.e., 2.0 g of PLA, 0.2 g of b-tricalcium phosphate, 300 rpm, stirring time for 2h ). In addition, the corresponding mechanism has been discussed.

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Edited by:

Wei Pan, Jianghong Gong, Chang-Chun Ge and Jing-Feng Li

Pages:

1613-1618

Citation:

Y. J. Wang et al., "Structural Assessment of Microsphere-Based Tissue Engineered Scaffold from Poly(Lactic Acid)/ß-Tricalcium Phosphate", Key Engineering Materials, Vols. 280-283, pp. 1613-1618, 2005

Online since:

February 2007

Export:

Price:

$38.00

[1] Z. Yang: Tissue Engineering(Chemical Industry Publications, China 2002).

[2] E.S. Christine and M.B. Jennie: Biomaterials Vol. 21 (2000), p.431.

[3] R. Langer and J.P. Vacanti: Science Vol. 260 (1993), p.920.

[4] R.M. Nerem and A. Sambanis: Biorheology Vol. 32 (1995), p.193.

[5] D.W. Hutmacher: Biomaterials Vol. 21 (2000), p.2529.

[6] Y. Tabata: Research Focus Vol. 6 ( 2001), p.483.

[7] J.M. Taboas, R.D. Maddox, P.H. Krebsbach and S.J. Hollister: Biomater. Vol. 24 (2003), p.181.

[8] L. Andrea, T. Jörg, S. Edith, S. Georg and G. Achim: Biomaterials Vol. 21 (2000), p.2361.

[9] J.M. Rueger, W. Linhart and D. Sommerfeldt: Orthopade Vol. 27 (1998), p.89.

[10] C.A. Vacanti and L.J. Bonassar: Clin. Orthop. (1999), p.375.

[11] Y. Deng, K. Zhao, X.F. Zhang, P. Hu and G.Q. Chen: Biomater. Vol. 23 (2002), p.4049.

[12] M.C. Wake, P.K. Gupta and A.G. Mikos: Cell Transplant Vol. 5 (1996), p.465.

[13] V. Maquet, A.R. Boccaccini, L. Pravata, I. Notingher and R. Jérôme: Biomaterials Vol. 25 (2004), p.4185.

[14] R. Zhang and P.X. Ma: J. Biomed. Mater. Res. Vol. 45 (1999), p.285.

[15] J. Zhao, X.Y. Yuan and K.D. Yao: Chem. Ind. Eng. Prog. Vol. 21 (2001), p.644.

[16] M. Borden, M. Attawia, Y. Khan and C.T. Laurencin: Biomaterials Vol. 23 (2002), p.551.

[17] M. Borden, S.F. El-Amin, M. Attawia and C.T. Laurencin: Biomaterials Vol. 24 (2003), p.597.

[18] R. Jalil and J.R. Nixon: J. Microencapsul. Vol. 7 (1990), p.297.

[19] S. Cohen, T. Yoshioka, M. Lucarelli, L. Hwang and R. Langer: Pham. Res. Vol. 8 (1991), p.713.

[20] Z. Zhou, M. Zhou, S. Wang, F. Lin and W. Shan: Biomater. Artif. Cells Immobilization Biotechnol. Vol. 21 (1993), p.71.