Microstructure and Mechanical Performances of Plasma-Sprayed Functionally Gradient HA-ZrO2-Bioglass Coatings

Abstract:

Article Preview

For practical applications such as artifical joints and dental implants, there is a strong demand for hydroxyapatite coatings with excellent performances to ensure long-term fixation. In the present study, functionally gradient HA-ZrO2-Bioglass coatings were prepared using net-energy controlled plasma spraying technology. The structural characteristics andmechanical performances of the coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD) and nanoindentation. The results showed that: (1) Pore sizes and compositions of the coatings changed gradually along the vertical substrate, crystal HA with few calcium phosphates was presented in the heat-treated coatings. (2) Surface of the coating was very rough with nano-sized crystalline grains and micropores; (3) Young’s modulus and hardness changed gradually at the range of coating-Ti6Alo4V interface. Compared with HA coatings, the tensile adhesive strength of the functionally graded HA-ZrO2-Bioglass coatings reached 38.6 MPa, much higher than that of single HA coatings.

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Edited by:

Wei Pan, Jianghong Gong, Chang-Chun Ge and Jing-Feng Li

Pages:

1893-1898

DOI:

10.4028/www.scientific.net/KEM.280-283.1893

Citation:

C. Y. Ning et al., "Microstructure and Mechanical Performances of Plasma-Sprayed Functionally Gradient HA-ZrO2-Bioglass Coatings", Key Engineering Materials, Vols. 280-283, pp. 1893-1898, 2005

Online since:

February 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.