Nonlinear Electrical Properties of (Sc, Ta) Doped TiO2 Varistor Ceramics

Abstract:

Article Preview

The nonlinear electrical properties of TiO2-based varistor doped with 0.25mol% Ta2O5 and different contents of Sc2O3 were investigated. It was found that the TiO2 varistor ceramic doped with 0.10mol% Sc2O3 exhibited an optimal nonlinear coefficient of 7.8, a breakdown electrical field of 16.0V/mm, and relative dielectric constant of 1.27 × 105 (measured at 1 kHz). In order to analyze the effect of Sc2O3 on TiO2 varistors, studies were made on the capacitance versus voltage characteristics. A Schottky-type barrier, which is assumed as the origin of varistor behavior, was inferred from the C-V measurement. The barrier height and donor concentration were obtained as 0.41eV and 1.21 × 1026cm-3, respectively, for sample doped with 0.10mol% Sc2O3. Analogized to the ZnO varistors, the formation mechanism of Schottky-type barrier was discussed in this paper by the theory of defect in crystal lattice.

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Edited by:

Wei Pan, Jianghong Gong, Chang-Chun Ge and Jing-Feng Li

Pages:

289-292

DOI:

10.4028/www.scientific.net/KEM.280-283.289

Citation:

W. B. Su et al., "Nonlinear Electrical Properties of (Sc, Ta) Doped TiO2 Varistor Ceramics", Key Engineering Materials, Vols. 280-283, pp. 289-292, 2005

Online since:

February 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.