Synthesis and Charge-Discharge Characteristics of Polycrystalline LiNi1-xCoxO2 (0 ≤ x ≤ 0.5) as a Cathode Material for Lithium Rechargeable Batteries


Article Preview

The synthesis and electrochemical characteristics of LiNi1-xCoxO2 (0 £ x £ 0.5) used as the promising cathode materials for lithium rechargeable batteries were investigated. The LiNi1-xCoxO2 was prepared by a soft chemistry route in which citric acid was used as the chelating agent to make the sol-gel precursor, then was calcined in oxygen atmosphere at the calcination temperature of 800°C for 12 h. Polycrystalline LiNi1-xCoxO2 possesses a hexagonal lattice of the α-NaFeO2 type characterized by using X-ray diffraction. The discharge capacity of LiNi0.8Co0.2O2 was 169.1 mAh/g with the efficiency of 90.5% in the first cycle and 162.1 mAh/g with only 4% capacity fading in the 10th cycle at 0.2 C rate over a potential range of 3.0-4.2 V.



Key Engineering Materials (Volumes 280-283)

Edited by:

Wei Pan, Jianghong Gong, Chang-Chun Ge and Jing-Feng Li




X. L. Li et al., "Synthesis and Charge-Discharge Characteristics of Polycrystalline LiNi1-xCoxO2 (0 ≤ x ≤ 0.5) as a Cathode Material for Lithium Rechargeable Batteries", Key Engineering Materials, Vols. 280-283, pp. 443-446, 2005

Online since:

February 2007




[1] G.T. -K. Fey, J.G. Chen, V. Subramanian, D.L. Huang, T. Akai and H. Masui: Chem. Phys. Vol. 79 (2003), p.21.

[2] H.J. Kweon, G.B. Kim, H.S. Lim, S.S. Nam and D.G. Park: J. Power Sources Vol. 83 (1999), p.84.

[3] C. Julien, S.S. Michael and S. Ziokiewicz: J. Inorg. Mater. Vol. 1 (1999), p.29.

[4] B.J. Hwang, R. Santhanam and C.H. Chen: J. Power Sources Vol. 114 (2003), p.244.

[5] M.Y. Song, R. Lee and I.H. Kwon: Solid State Ionics Vol. 156 (2003), p.319.

[6] K.I. Gnanasekar, H.A. Cathrino, J.C. Jiang, A.A. Mrse, G. Nagasubrahmanian, D.H. Doughty and B. Rambabu: Solid State Ionics Vol. 148 (2002), p.299.

[7] G.T.K. Fey and C.Z. Lu: Solid State Ionics Vol. 152-153 (2002), p.83.

[8] A. Mantriram and J. Kim: Chem. Mater. Vol. 10 (1998), p.2895.

[9] Y.M. Choi, S. -I. Pyun, S. -I Moon and Y. -E. Hynug: J. Power Sources Vol. 72 (1998), p.83.

[10] D. Aurbach, K. Gamolsky, B. Markovshy, G. Salitra, Y. Gofer, U. Heider, R. Oesten and M. Schmidt: J. Electrochem. Soc. Vol. 147 (2000), p.1332.

[11] G.X. Wang, S. Zhong, D.H. Bradhurst, S.X. Dou and H.K. Liu: J. Power Sources Vol. 76 (1998), p.141.

[12] T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi and H. Komori: Electrochim. Acta Vol. 38(1993), p.1159.

[13] W.S. Kim, K. l. Chung, Y.K. Choi and Y.E. Sung: J. Power Sources Vol. 115 (2003), p.101.

[14] K. Suzuki, Y. Kuroiwa, S. Takami, M. Kubo and A. Miyamoto: Appl. Surf. Sci. Vol. 189 (2002), p.313.

[15] M.E. Arroyo y Dompablo and G. Ceder: Chem. Mater. Vol. 15 (2003), p.63.

[16] R.V. Chebiam, A.M. Kannan, F. Prado and A. Manthiram: Electrochem. Comm. Vol 3 (2001).