Synthesis and Characterization of LiNixCoyMn1-x-yO2 as a Cathode Material for Lithium Ion Batteries

Abstract:

Article Preview

The newly developed LiNi0.6Co0.4-xMnxO2 (0.1 < x < 0.3) cathode materials were synthesized by calcining the mixture of NixCoyMn1-x-y(OH)2 and Li2CO3 at 900-940 oC for 15 hr in flowing O2 atmosphere. The NixCoyMn1-x-y(OH)2 precursor was obtained by the chemical co-precipitation method at the pH value controlled by the concentration of NaOH, NH4OH and transition metal sulfate solution. The X-ray diffraction patterns indicated the pure layered hexagonal structure LiNi0.6Co0.4-xMnxO2. The electrochemical behavior of LiNixCoyMn1-x-yO2 powder was examined by using test cells cycled within the voltage range 3-4.3 V at the 0.1C rate for the first cycle and then at the 0.2C rate afterwards. LiNixCoyMn1-x-yO2 cathode materials showed good initial discharge capacity (165-180 mAh/g) and cycling performance. The fading rate was less than 5 % after 20 cycling test. It is demonstrated that LiNixCoyMn1-x-yO2 electrode should exhibit great potential for the future application in lithium-ion battery cathode material.

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Edited by:

Wei Pan, Jianghong Gong, Chang-Chun Ge and Jing-Feng Li

Pages:

677-682

DOI:

10.4028/www.scientific.net/KEM.280-283.677

Citation:

P. Y. Liao and J. G. Duh, "Synthesis and Characterization of LiNixCoyMn1-x-yO2 as a Cathode Material for Lithium Ion Batteries", Key Engineering Materials, Vols. 280-283, pp. 677-682, 2005

Online since:

February 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.