Effect of Alkaline-Earth Metal Composition on Spectroscopic Properties of Er3+ in Fluorophosphate Glasses

Abstract:

Article Preview

Optical spectroscopic properties of Er3+-doped alkaline-earth metal modified fluoropho sphate glasses have been investigated experimentally for developing broadband fiber and planar amplifiers. The results show a strong correlation between the alkaline-earth metal content and the spectroscopic parameters such as absorption and emission cross sections, full widths at half-maximum and Judd-Ofelt intensity parameters. It is found that strontium ions could have more influences on the Judd-Ofelt intensity parameters and the absorption and emission cross sections than other alkaline-earth metal ions such as Mg2+, Ca2+, Ba2+. The sample containing 23 mol% strontium fluoride exhibits the maximum emission cross section of 7.58 × 10-21 cm2, the broadest full width at half-maximum of 65 nm and the longer lifetime of 8.6 ms among the alkaline-earth metal modified fluorophosphates glasses studied. The Judd-Ofelt intensity parameter W6s, the emission cross sections and the full widths at half-maximum in the Er3+-doped fluorophosphate glasses studied are larger than in the silicate and phosphate glasses.

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Edited by:

Wei Pan, Jianghong Gong, Chang-Chun Ge and Jing-Feng Li

Pages:

957-962

DOI:

10.4028/www.scientific.net/KEM.280-283.957

Citation:

T. Li et al., "Effect of Alkaline-Earth Metal Composition on Spectroscopic Properties of Er3+ in Fluorophosphate Glasses", Key Engineering Materials, Vols. 280-283, pp. 957-962, 2005

Online since:

February 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.