Effect of Alkaline-Earth Metal Composition on Spectroscopic Properties of Er3+ in Fluorophosphate Glasses


Article Preview

Optical spectroscopic properties of Er3+-doped alkaline-earth metal modified fluoropho sphate glasses have been investigated experimentally for developing broadband fiber and planar amplifiers. The results show a strong correlation between the alkaline-earth metal content and the spectroscopic parameters such as absorption and emission cross sections, full widths at half-maximum and Judd-Ofelt intensity parameters. It is found that strontium ions could have more influences on the Judd-Ofelt intensity parameters and the absorption and emission cross sections than other alkaline-earth metal ions such as Mg2+, Ca2+, Ba2+. The sample containing 23 mol% strontium fluoride exhibits the maximum emission cross section of 7.58 × 10-21 cm2, the broadest full width at half-maximum of 65 nm and the longer lifetime of 8.6 ms among the alkaline-earth metal modified fluorophosphates glasses studied. The Judd-Ofelt intensity parameter W6s, the emission cross sections and the full widths at half-maximum in the Er3+-doped fluorophosphate glasses studied are larger than in the silicate and phosphate glasses.



Key Engineering Materials (Volumes 280-283)

Edited by:

Wei Pan, Jianghong Gong, Chang-Chun Ge and Jing-Feng Li




T. Li et al., "Effect of Alkaline-Earth Metal Composition on Spectroscopic Properties of Er3+ in Fluorophosphate Glasses", Key Engineering Materials, Vols. 280-283, pp. 957-962, 2005

Online since:

February 2007




[1] S. Tanabe: C. R. Chimie Vol. 5, (2002), p.815.

[2] K. Seneschal, S. Jiang, T. Luo, F. Smektala, J. Lucas and N. Peyghambarian: Proc. SPIE Vol. 4282 (2001), p.93.

[3] B. J. Ainslie, S. T. Davey, D. Szebesta, J. R. Williams, M. W. Moore, T. Whitley and R. Wyatt: J. Non-Cryst. Solids Vol. 184 (1995), p.225.

DOI: https://doi.org/10.1016/0022-3093(94)00658-x

[4] J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt and R. Sauerbrey: Appl. Phys. B Vol. 72 (2001), p.399.

DOI: https://doi.org/10.1007/s003400100515

[5] S. Ronchin, R. Rolli, M. Montagna, C. Duverger, V. Tikhomirov, A. Jha, M. Ferrari, G. C. Righini, S. Pelli and M. Fossi: J. Non-Cryst. Solids Vol. 284 (2001), p.243.

DOI: https://doi.org/10.1016/s0022-3093(01)00409-4

[6] H. Ono, K. Nakagawa, M. Yamada and S. Sudo: Electron. Lett. Vol. 32 (1996), p.1586.

[7] B. R. Judd: Phys. Rev. Vol. 127 (1962), p.750.

[8] G. S. Ofele: J. Chem. Phys. Vol. 37 (1962), p.511.

[9] X. L. Zou and T. Izumitani: J. Non-Cryst. Solids Vol. 162 (1993), p.68.

[10] M. J. Weber: Phys. Rev. Vol. 157 (1967), p.262.

[11] W. T. Carnall, P. R. Flelds and B. G. Wybourne: J. Chem. Phys. Vol. 42 (1965), p.3797.

[12] H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli and A. Speghini: J. Non-Cryst. Solids Vol. 240 (1998), p.66.

[13] A. Speghini, R. Francini, A. Martinez, M. Tavernese and M. Bettinelli: Spectrochim. Acta A Vol. 55 (1999), p.263.

[14] R. Rolli, M. Montagna, S. Chaussedent, A. Monteil, V. K. Tikhomirov and M. Ferrari: Opt. Mater. Vol. 21 (2003), p.743.

[15] S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada and N. Soga: J. Appl. Phys. Vol. 73 (1993), p.8451.

[16] D. E. McCumber: Phys. Rev. A Vol. 134 (1964), p.299.

[17] W. J. Miniscalco and R. S. Quimby: Opt. Lett. Vol. 16 (1991), p.258.

[18] J. N. Sandoe, P. H. Sarkies and S. Parke: J. Phys. D Vol. 5 (1972), p.1788.

[19] L. C. Courrol, L. R. P. Kassab, M. E. Fukumoto, N. U. Wetter, S. H. Tatumi and N. I. Morimoto: J. Lumin. Vol. 102&103 (2003), p.91.

[20] S. Q. Xu, Z. M. Yang, S. X. Dai, J. H. Yang, L. Wen, L. L. Hu and Z. H. Jiang: Chin. Phys. Lett. Vol. 20 (2003), p.905.

[21] S. B. Jiang, T. Luo, B. C. Hwang, F. Smekatala, K. Seneschal, J. Lucas and N. Peyghambarian: J. Non-Cryst. Solids Vol. 263&264 (2000), p.364.

DOI: https://doi.org/10.1016/s0022-3093(99)00646-8

Fetching data from Crossref.
This may take some time to load.