Micro-Spectrometric Investigations of Inorganic Components of the Black Corals for Biomedical Applications


Article Preview

The distribution of about twenty inorganic elements was traced in the skeletons of black corals of the Antipathes salix species. Electron microprobe and PIXE mappings revealed the peculiar structure of this material, composed of the large cells (arranged in annual rings), surrounded by thin layers with an elevated level of iodine (up to 5%). Our current knowledge of the chemical composition of these corals’ skeleton is not complete. Essentially the organic skeleton is saturated with inorganic elements and several of these could be commercially important. In fact, they have never been investigated for biomedical applications. In this preliminary current work, black corals from the Antipathes salix species were studied with the aim of detecting the inorganic components of their matrix and their suitability as biomedical materials.



Key Engineering Materials (Volumes 284-286)

Main Theme:

Edited by:

Panjian Li, Kai Zhang and Clifford W. Colwell, Jr.




D. Nowak et al., "Micro-Spectrometric Investigations of Inorganic Components of the Black Corals for Biomedical Applications ", Key Engineering Materials, Vols. 284-286, pp. 297-300, 2005

Online since:

April 2005




[1] Vago R, Plotquin D, Bunin A, Sinelnikov I, Atar D, Itzhak D. (2002), Hard tissue remodeling using biofabricated coralline biomaterials. J Biochem. &Biophys Metho., 50(2-3): 253-259.

DOI: https://doi.org/10.1016/s0165-022x(01)00235-4

[2] Grigg R. W., Opresko D. M. (1977) Order Antipatharia, black corals. In D. M. Devaney, L. Eldredge (Eds), Reef and Shore Fauna of Hawaii. Section 1: Protozoa through Ctenophora. Bishop Museum Press, Honolulu, 242-261.

[3] http: /www. arkive. org/coral/Coral/antipatharia_more. html.

[4] Goldberg W. M (1978). Mar. Biol. 49, 669-670.

[5] Ellis L. C., Jr., Chandross R. J and Bear R. S. (1980). Comp. Biochem. Physiol. 66B, 163-165.

[6] Holl S. M, Schaefer J, Goldberg W. M, Kramer K. J, Morgan T. D, Hopkins T. L (1992). Arch Biochem Biophys. 292, 107-111.

[7] Brown C. H. (1975) Structural materials in animals. J. Wiley and Sons, New York, 448 pp.

[8] Kim K., Goldberg W. M., Taylor G. T. (1992). Biol. Bull. 182, 195-209.

[9] Goldberg W.M., Hopkins T. L, Holl S.M., Schaefer J., Kramer K.J., Morgan T.D. and Kim K. (1994). Comp. Biochem. Physiol. 107B, 633-643.

[10] Lebed S., Cholewa M., Cioch Z., Cleff B., Golonka P., Jamieson D.N., Legge G.J.F., Łazarski S., Potempa A., Sarnecki C. and Stachura Z. (1999), Nucl. Insdstrum. Methods B, 158, 44-47.

DOI: https://doi.org/10.1016/s0168-583x(99)00387-0

[11] Chevallier P., Dhez P., Legrand F., Erko A., Agafonov Y., Panchenko L.A. and Yakshin A. (1996), J. Trace Microprobe Techn. 14, 517-539.

[12] P. Dillman P., P. Populus P., P. Chevallier P.P., P. Fluzin P., G. Beranger G. and A. Firsov A. (1997), J. Trace Microprobe Techn. 15, 251-262.

[13] Hammersley A.P., Brown K. , Burmeister W. , Claustre L. , Gonzalez A., Mcsweeney S., Mitchell E. , Moy J. -P., Svensson S.O. and Thompson A.W., J. Synchrotron Radiat., 4 (1997) 67.

DOI: https://doi.org/10.1107/s0909049596015087

[14] Zhang M., Haga A., Sekiguchi H., Hirano S. (2000), Int. J. Biol. Macromolecules 27, 99-105.

[15] Manoli F., Koutsopoulos S., Dalas E. (1997). J. Crystal Growth 182, 116-124. a) b) c).