Preparation of Porous Poly(Lactic Acid)/Hydroxyapatite Microspheres Intended for Injectable Bone Substitutes

Abstract:

Article Preview

Porous biodegradable microspheres were successfully obtained by an improvement single step and surfactant-free emulsion solvent evaporation method. The organic phase composed of PLA and dichloromethane was stirred in aqueous phase including Ca2+ ions to yield oil in water emulsion. During emulsification, stirring rate was increased so as to produce the W/O/W emulsion that results in microspheres with internal pores. The interface of internal water/oil was stable in W/O/W emulsion, which was explained that the bond between Ca2+ ions and carboxyl group of poly(lactic acid) would be stabilized the internal water/oil interface. Adding PO4 3- aqueous solution prompted to precipitate low crystallized hydroxyapatite on the external oil/water interface, and the precipitated hydroxyapatite would stabilizied microspheres formation. The resulting microspheres were approximately 100-500 µm with internal spherical pores of 10-200 µm in diameter. The porous biodegradable microspheres were expected to be utilized as injectable bone substitutes that allow bone ingrowth and bone regeneration.

Info:

Periodical:

Key Engineering Materials (Volumes 284-286)

Main Theme:

Edited by:

Panjian Li, Kai Zhang and Clifford W. Colwell, Jr.

Pages:

819-822

DOI:

10.4028/www.scientific.net/KEM.284-286.819

Citation:

F. Nagata et al., "Preparation of Porous Poly(Lactic Acid)/Hydroxyapatite Microspheres Intended for Injectable Bone Substitutes ", Key Engineering Materials, Vols. 284-286, pp. 819-822, 2005

Online since:

April 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.