Alumina Matrix Composites in Arthroplasty

Abstract:

Article Preview

It is well known that the introduction of zirconia into the alumina matrix has a positive effect on bending strength of the material, and especially on toughness which is the main limit of alumina ceramics. While the many attempts made in the past to develop alumina matrix composites suitable for biomedical applications containing zirconia as a toughening phase (Zirconia Toughened Alumina – ZTA) did not leave the developmental stage, recently ball heads and inlays for THR bearings made out a three phase alumina matrix composite were introduced into the market. In the alumina matrix of this material both zirconia and exagonal aluminate platelets are distributed, and then it belongs to the class of Zirconia and Platelets Toughened Alumina – ZPTA. Besides ball heads and inlays, also several other innovative orthopedic devices made out this new ceramic biomaterial are in different development stage. This paper reviews the present status of alumina matrix composites in orthopedic application, with special attention to ZPTA.

Info:

Periodical:

Key Engineering Materials (Volumes 284-286)

Main Theme:

Edited by:

Panjian Li, Kai Zhang and Clifford W. Colwell, Jr.

Pages:

979-982

Citation:

C. Piconi et al., "Alumina Matrix Composites in Arthroplasty", Key Engineering Materials, Vols. 284-286, pp. 979-982, 2005

Online since:

April 2005

Export:

Price:

$38.00

[1] Claussen N. Science and Technology of Zirconia II, 1984 ACER, Columbus, OH, pp.325-351.

[2] Mandrino A, Eloy R, Moyen B, Lerat J-L, Treheux D. J Mater Sci Mater Med 1992; 3: 457-63.

[3] Rieu J, Goeuriot P. Clin Mater 1993; 12: 211-17.

[4] Salomoni A, Tucci A, Esposito L, Stamenkovich I. J Mater Sci Mater Med 1994; 5: 651-653.

[5] Affatato S, Testoni M. Cacciari GL, Toni A. Biomaterials 1999; 20: 971-75.

[6] Affatato S, Testoni M. Cacciari GL, Toni A. Biomaterials 1999; 20: 1925-9.

[7] Burger W. Keram Z 1997; 49: 1067-70.

[8] Burger W, Richter HG. Key Eng Mater 2001; 192-195: 545-8.

[9] Deville S, Chevalier J, Fantozzi G, et al. J Eur Ceram Soc 2003; 23: 2975-82.

[10] Burger W, Gernsheimer S, Andersch, H, et al. U.S. Patent 5, 830, 816.

[11] Piconi C, Burger W, Richter HG, et al. J Mater Sci Mater Med 1997; 8: 113-118.

[12] Piconi C, Maccauro G. Biomaterials 1999; 20: 1-25.

[13] Ciapetti G, Verri E, Savioli F, Pizzoferrato A. Proc. 9th SIMCER, Centro Ceramico Publ. 2000, Bologna, pp.39-42.

[14] Rack R, Pfaff HG. Bioceramics in hip joint replacements, Thieme 2000, Stuttgart, pp.141-45.

[15] Willmann G, von Charmier W, Pfaff HG, Rack R. Key Eng Mater 2001; 192-195: 545-8.

[16] Maccauro G, Piconi C, Muratori F, et al. Bioceramics in joint arthroplasty. Steinkoppf 2004, Darmstadt, pp.47-50.

[17] Heimke G, Leyen S, Willmann G. Biomaterials 2002; 23: 1539-51.

[18] Insley GM, Streicher RM. Key Eng Mater 2004; 254-56: 675-8.

[19] Piconi C, Burger W, Richter HG, et al. Biomaterials 1998; 16: 1489-94.

[20] Merkert P, Bioceramics in Joint Arthroplasty. Steinkoppf 2003, Darmstadt, pp.123-6.

[21] Rack R, Pfaff HG. Bioceramics in joint arthroplasty. Thieme Publ. 2001 Stuttgart, pp.103-8.

[22] Kaddick C, Pfaff HG. Bioceramics in hip joint replacements. Thieme 2000, Stuttgart, pp.146-50.

[23] Kaddick C, Pfaff HG. Bioceramics in joint arthroplasty. Thieme 2002 Stuttgart, pp.16-20.

[24] Stewart TP, Tipper JL, Insley G, Streicher RM, Ingham E, Fisher J. J Biomed Mater Res App Biomater 2003; 66B: 567-573.

[25] Zagra L, Giacometti-Ceroni R, Corbella M. Bioceramics in joint arthroplasty. Steinkoppf 2004, Darmstadt, pp.163-69.

DOI: https://doi.org/10.1007/978-3-7985-1968-8_28

[26] Lazennec J-Y, Quigshan C, Kai Nan A, Masson B. Bioceramics in joint arthroplasty. Steinkoppf 2004, Darmstadt, pp.51-55.

[27] Merkert P. Bioceramics in Joint Arthroplasty. Steinkoppf 2004, Darmstadt, pp.129-30.

[28] Garino J. Bioceramics in joint arthroplasty Thieme 2002 Stuttgart, pp.131-4.