Development of Silicon Nitride Components for Gas Turbine

Abstract:

Article Preview

Silicon nitride is one of the most practical candidates for ceramic gas turbines. The SN282 is silicon nitride material developed by Kyocera for gas turbines. Several new technologies have been developed to achieve materialization of ceramic gas turbines, such as material, fabrication process, evaluation / analysis technology. Recent technology is focused on recession of silicon-based ceramics under combustion gas. Environmental Barrier Coatings (EBCs) are developed to suppress these recession. We have found rare-earth element silicate and yttrium stabilized zirconium oxide (YSZ) have high corrosion resistance to the combustion gas. These materials were applied to the ceramic gas turbine components. The components with EBCs were evaluated in the actual engine tests. We have confirmed that the EBCs effectively work for the recession resistance.

Info:

Periodical:

Edited by:

Hai-Doo Kim, Hua-Tay Lin and Michael J. Hoffmann

Pages:

10-15

Citation:

T. Fukudome et al., "Development of Silicon Nitride Components for Gas Turbine ", Key Engineering Materials, Vol. 287, pp. 10-15, 2005

Online since:

June 2005

Export:

Price:

$38.00

[1] K. Tanaka, M. Yoshida, T. Kubo, H. Terazono, S. Tsuruzono 2000, Development and Evaluation of Ceramic Components for Small Gas Turbine Engine, ASME Paper 2000-GT-531.

DOI: https://doi.org/10.1115/2000-gt-0531

[2] T. Fukudome, S. Tsuruzono, W. Karasawa, Y. Ichikawa 2002, Development and Evaluation of Ceramic Components for Gas Turbine, ASME Paper GT-2002-30627.

DOI: https://doi.org/10.1115/gt2002-30627

[3] Y. Etori, T. Hisamatsu, I. Yuri, Y. Yasutomi, T. Machida and K. Wada 1997, Oxidation Behavior of Ceramics for Gas Turbine Combustion Gas Flow at 1500 oC, ASME Paper 97-GT355.

DOI: https://doi.org/10.1115/97-gt-355

[4] M. K. Ferber, H. T. Lin, V. Parthasarathy and W. Brentnall 1999, Degradation of Silicon Nitrides in High Pressure, Moisture Rich Environments, ASME Paper 99-GT-265.

[5] K. L. More, P. F. Tortorelli, M. K. Ferber, L. R. Walker, J. R. Keiser, N. Miriyala, W. D. Brenrnall and J. R. Price 1999, Exposure of Ceramics and Ceramic Matrix Composites in Simulated and Actual Combustor Environments, ASME Paper 99-GT-292.

DOI: https://doi.org/10.1115/99-gt-292

[6] R. A. Wenglarz and K. Kouns 2000, Ceramic Vanes for a Model 501-K Industrial Turbine Demonstration, ASME Paper 2000-GT-73.

DOI: https://doi.org/10.1115/2000-gt-0073

[7] B. Schenk, T. Stangman, E. J. Opila, R.C. Robinson, D. S. Fox, H. Klemm, C. Taut, K. More and P. Torterelli 2001, Oxidation Behavior of Prospective Silicon Nitride Materials for Advanced Micro Turbine Applications, ASME Paper 2001-GT-0459.

DOI: https://doi.org/10.1115/2001-gt-0459

[8] N. Miriyala, A. Fahme and M. V. Roode 2001, Ceramic Stationary Gas Turbine Program30μm 30μm Combustor Liner Development Summary, ASME Paper 2001-GT-0512.

DOI: https://doi.org/10.1115/2001-gt-0512

[9] J. Price, O. Jimenez, N. Miriyala, J. B. Kimmel, D. R. Leroux and T. Fahm 2001, Ceramic Stationary Gas Turbine Development Program Eighth Annual Summary, ASME Paper 2001- GT-0517.

DOI: https://doi.org/10.1115/2001-gt-0517

[10] G. Corman, A. Dean, S. Brabetz, K. McManus, K. Luthra, H. Wang, R. Orenstein, M. Schroder, D. Martin, R. D. Stefano and L. Tognarelli 2001, Rig and Gas Turbine Engine Testing of MI-CMC Combustor and Shroud Components, ASME Paper 2001-GT-0593.

DOI: https://doi.org/10.1115/2001-gt-0593

[11] K. N. Lee 1999, Key Durability Issue With Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics, ASME Paper 99-GT-443.

[12] M. Aparicio and A. Duran 2000, Yttrium Silicate Coating for Oxidation Protection of Carbon-Silicon Carbide Composites, J. Am. Ceram. Soc., 83.

[6] 1351-55.

[13] H. E. Eaton, G. D. Linsey, E. Y. Sun, K. L. More, J. B. Kimmel, J. R. Price and N. Miriyala 2001, EBC Protection of SiC/SiC Composites in the Gas Turbine Combustion Environment - Continuing Evaluation and Refurbishment Considerations, ASME Paper 2001-GT-0513.

DOI: https://doi.org/10.1115/2001-gt-0513

[14] S. Ueno, N. Kondo, D. D. Jayaseelan, T. Ohji, S. Kanzaki 2003, High Temperature Hydro Corrosion Resistance of Silica based Oxide Ceramics, ASME Paper GT-2003-38878.

DOI: https://doi.org/10.1115/gt2003-38878

[15] T. Abe, T. Sugiura, S. Okunaga and K. Nojima, Y. Tsutui and T. Matsunuma 2000, Research and Development of Practical Industrial Cogeneration Technology in Japan, ASME Paper 2000-GT-655.

DOI: https://doi.org/10.1115/2000-gt-0655

[16] R. Tanaka, T. Tatsumi, Y. Ichikawa and K. Sanbonsugi 2001, Development of the Hybrid Gas Turbine, ASME Paper 2001-GT-0515.

[17] S. Tsuruzono, M. Yoshida, T. Kubo, T. Ono and T. Fukudome 2001, Development and Evaluation of Ceramic Components for 8000-Kw Class Hybrid Gas Turbine, ASME Paper 2001-GT-0516.

DOI: https://doi.org/10.1115/2001-gt-0516

[18] H. Nagata, W. Karasawa, Y. Ichikawa, S. Tsuruzono, T. Fukudome 2003, Development of the 8000 kW Class Hybrid Gas Turbine, ASME Paper GT-2003-38703.

DOI: https://doi.org/10.1115/gt2003-38703

[19] T. Fukudome, S. Tsuruzono 2002, Development of Ceramic Gas Turbine Components for Cogeneration, FC report 20 (in Japanese), (2002) No. 9, 216-217.

[20] S. Najima, I. Yuri, T. Hisamatsu, Development of Environmental Barrier Coating on Ceramics for Gas Turbine, 2004, CRIEPI Report W03009 (in Japanese), (2004).

Fetching data from Crossref.
This may take some time to load.