Hardness Limits of SiC and Si3N4 Ceramic Materials


Article Preview

Nano- and macro-hardness of SiC and Si3N4 based ceramic materials prepared by liquid phase sintering were evaluated. The applied loads were 3.5 mN and 9.81 N, respectively. The measurements showed that the nano-hardness of both ceramics is substantially higher compared to the macro-hardness. The influence of solid solutions and grain boundary composition on the hardness of SiC-based ceramics was studied. The macro-hardness is strongly dependent on the grain boundary composition while the nano-hardness was nearly the same for all tested samples with different Re2O3-AlN additives. In the case of Si3N4 based ceramics the SiC nano-inclusions content was varied. As a source of SiC nanoinclusions and grain boundary phase modifierSiNC polymer precursor has been used. Nano- as well as micro-hardness increased with increasing SiC content. Present paper deals with the explanation of both results.



Edited by:

Hai-Doo Kim, Hua-Tay Lin and Michael J. Hoffmann




M. Balog et al., "Hardness Limits of SiC and Si3N4 Ceramic Materials", Key Engineering Materials, Vol. 287, pp. 311-316, 2005

Online since:

June 2005




[1] Prochazka, S., In Special Ceramics 6., ed. P. Popper. BCRA, UK, 1975, pp.171-181.

[2] Negita, K., J. Am. Ceram. Soc., 69 (1986) C 308-C 310.

[3] Sciti, D., Guicciardi, S., Bellosi, A., J. Eur. Ceram. Soc., 21 (2001) 621-632.

[4] Hirosaki N., Okada A., Mitomo M., J. Mater. Sci., 25 (1990) 1872-1876.

[5] Choi, H. -J., Lee, J. -G., Kim, Y. -W., J. Am. Ceram. Soc., 85 (2002) 2281-2286.

[6] Zhou, Y., Hirao, K., Toriyama, M., Yamauchi, Y., Kanzaki, S., J. Am. Ceram. Soc., 84 (2001) 1642-1644.

[7] Balog M., Šajgalík P., Lenčéš Z., Monteverde F., Solid State Phenom., 90-91 (2003) 273-279.

[8] Niihara, K.: J. Jpn. Ceram. Soc. 99 (1999) 974.

[9] Herrmann, M., Schubert, C., Rendtel, A., and Hübner, H.: J. Am. Ceram. Soc. 81 (1988) 1094.

[10] Dusza, J., Šajgalík, P., Steen, M.: J. Am. Ceram. Soc., 82 (1999) 3613.

[11] Šajgalík P., Hnatko M., Lofaj F., Hvizdoš P., Dusza J., Warbichler P., Hofer F., Riedel R., Lecomte E., Hoffman M.J., J. Eur. Ceram. Soc., 20 (2001) 453-462.

DOI: https://doi.org/10.1016/s0955-2219(99)00176-4

[12] Šajgalík P., Hnatko M., Lenčéš Z., Warbichler P., Hofer F., Z. Metallkd. 92 (2001) 8 937-941.

[13] M. Balog, P. Šajgalík, Z. Lenčéš, J. Kečkéš, J. -T. Huang, Ceramic Transactions 142 (2003) 191-202.

[14] Schneider, S. J., Eng. materials handbook, Volume 4, ASM International, USA, 1987, p.808.

[15] Lankford, J., Davidson, D.L., J. Mater. Sci., 14 (1979)1669-75.

[16] Ruh, R., Zangvil, A., J. Am. Ceram. Soc., 65 (1982) 260-265.

[17] Vassen, R., Stover, D., J. Am. Ceram. Soc., 82 (1999) 2585-2593.

[18] E.O. Hall, proc. Phys. Soc. Ser. B 64 25 (1951).

[19] Petch N. J., J. Iron Steel Inst. 174 25 (1953).

[20] Krell, A., Schädlich, S., Mater. Sci. Eng., A307 (2001) 172-181.

[21] Hnatko M., Balog M., Šajgalík P., Key Eng. Mater., accepted.