Effect of Fibrin/Collagen Matrix on Osteogenic Differentiation of Bone Marrow Stromal Cells

Abstract:

Article Preview

Fibrin is a natural polymer with excellent biocompatibility and widely used as a cell delivery vehicle in tissue engineering. However, fibrin of low concentration is not able to promote cell growth and differentiation within a desired time because of contraction and biodegradation of cell-seeded matrices. In this study we investigated effects of combining fibrin with collagen on growth and osteogenic differentiation of bone marrow stromal cells (BMSCs). Rabbit BMSCs-populated fibrin hydrogels with or without collagen were fabricated and cultured by the free floating method for 4 weeks. The DNA content of fibrin/collagen matrix significantly increased the growth of BMSCs compared to the fibrin-only matrix at 2week. Alkaline phosphatase activity was significantly higher in the fibrin/collagen matrix (71.0 nmol of p-nitrophenol /min/disc) than the fibrin-only matrix (45.1 nmol of p-nitrophenol /min/disc). Deposition of calcium was not significantly different between two groups. Histological examination also revealed more matured organization and deposition of collagen fibers and more concentric calcium deposition in the fibrin/collagen matrix compared to the fibrin-only matrix. These results indicated that fibrin/collagen matrix could be more effective than fibrin alone in supporting growth and osteogenic differentiation of BMSCs.

Info:

Periodical:

Key Engineering Materials (Volumes 288-289)

Edited by:

Xingdong Zhang, Junzo Tanaka, Yaoting Yu and Yasuhiko Tabata

Pages:

35-38

DOI:

10.4028/www.scientific.net/KEM.288-289.35

Citation:

Y. I. Yang et al., "Effect of Fibrin/Collagen Matrix on Osteogenic Differentiation of Bone Marrow Stromal Cells", Key Engineering Materials, Vols. 288-289, pp. 35-38, 2005

Online since:

June 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.