Fracture Resistance Evaluation of Fibre Reinforced Brittle Matrix Composites


Article Preview

Determination of the fracture toughness using a specimens with straight and/or chevron notch in the three (four) point bend test for monolithic ceramic materials can be taken as standardized techniques. In case of composite materials, mainly of brittle matrix reinforced by unidirectional fibres the crack growth resistance increases as the crack propagates. In addition, the long fibres stimulate delaminations along fibre – matrix interface perpendicularly to the major crack. Fracture toughness determination (in the loading mode I) in cases when delaminations take place is difficult. The chevron notch technique could be the right way to overcome this difficulty and obtain exact fracture toughness characteristics by its natural ability to “keep” the direction of major crack. Based on fractographic analyses some examples are described to show potential of the chevron notch technique for fracture resistance characterisation of the studied composite including comparison of data from chevron and straight notch technique etc.



Edited by:

J. Dusza, R. Danzer and R. Morrell




I. Dlouhý and Z. Chlup, "Fracture Resistance Evaluation of Fibre Reinforced Brittle Matrix Composites", Key Engineering Materials, Vol. 290, pp. 167-174, 2005

Online since:

July 2005




[1] K. K. Chawla: Ceramic Matrix Composites (second ed., Kluwer Academic Publishers, Boston, 2003).

[2] S. J. Grisaffe: Advanced Materials and Processes Vol. 1 (1990), p.43.

[3] A.R. Boccaccini: J. Ceram. Soc. Japan Vol. 109 (7) (2001), p.99.

[4] A.G. Evans: Acta Mater. Vol. 45 (1) (1997), p.23.

[5] J. Vicens, G. Farizy, J.L. Chermant: Aerospace Sci. Technol. Vol. 7 (2), p.135.

[6] K. G. Dassions, C. Galiotis, V. Kostoupulos, M. Steen: Acta Mat. Vol. 51 (2003), p.5359.

[7] B. Budiansky, J.W. Hutchinson, A.G. Evans: J. Mech. Phys. Solids Vol. 34 (1986), p.167.

[8] B. Budiansky, J.C. Amazigo: J. Mech. Phys. Solids Vol. 37 (1989), p.167.

[9] B. Budiansky, Y.L. Cui: J. Mech. Phys. Solids Vol. 42 (1994), p.1.

[10] T. Akatsu, et al.: In. Fracture Mechanics of Ceramics, (Bradt et al eds., Plenum Press, 1996), p.245.

[11] P. A. Lowden: Adv. Composite Mater Ceramic Trans Vol. 19 (1991), p.619.

[12] A. Demir, Z. Tatli: Composites Part A 35 (2004), p.1433.

[13] J. P. Singh, D. Singh, M. Sutaria: Composites Part A 30 (1999), p.445.

[14] A. R. Boccaccini: InterCeram Vol. 51 (1) (2002), p.24.

[15] A.G. Evans, M.Y. He, J.W. Hutchinson: J. Amer. Ceram. Soc. Vol. 72 (1989), p.2300.

[16] A.G. Evans: In. The Modelling of Material Behav. (Embury & Thompson Eds. 1990), p.245.

[17] D. Munz, T. Fett: In. Mechanical Prop., Failure Behaviour, Material Selection (Springer Verlag, 1999).

[18] P.A. Withey, R.L. Brett, P. Bowen: Mat. Sci. Technol. Vol. 8 (1992), p.805.

[19] A. Ghosh, M.G. Jenkins, et al.: In. Ceramic Materials & Components for Engines, p.592.

[20] I. Dlouhý, M. Holzmann, J. Man, L. Válka: Metallic Mater. Vol. 32 (1994), p.3.

[21] J. J. Mecholsky: Ceram. Bull. Vol. 65 (1986), p.315.

[22] J. S. Ha, K.K. Chawla: Mater. Sci. Eng. A203 (1995), p.1271.

[23] A.R. Boccacini, J. Janczak-Rusch, I. Dlouhý: Mat. Chem. Phys. Vol. 53 (1998), p.155.

[24] I. Dlouhý, M. Reinisch, A.R. Boccaccini: In. Fracture Mechanics of Ceramics 13 (Moscow 2002, Bradt. R.C. et al eds, Kluwer, 2003), p.203.

[25] A. R. Boccaccini, H. Kern, I. Dlouhý: Mat. Sci. Eng. A308 (1-2) (2001), p.111.

[26] J. J. Brennan, K.M. Prewo: J. Mat. Sci. Vol. 17 (1982), p.2371.

[27] R. Venkatesh: Mat. Sci. Eng. A268 (1999), p.47.

[28] W. Pannhorst: In. Ceram. Eng. Sci. Proc. Vol. 11 (1990), p.947.

[29] J. I. Bluhm: Eng. Fract. Mech. Vol. 7 (1975), p.593.

[30] K. K. Chawla: Fibrous Materials (Cambridge University Press, Cambridge, UK, 1999), p.164.

[31] I. Dlouhý, M. Holzmann, J. Man, L. Válka: Metallic Mater. Vol. 32 (1994), p.3.

[32] I. Dlouhý, A.R. Boccaccini: Scripta Mater. Vol. 44 (2001), p.531.

[33] P. J. Lamicq, G.A. Bernhart, et al.: Ceram. Bull. Vol. 65 (1986), p.336.

[34] I. Dlouhy, Z. Chlup, K.K. Chawla, R. Kulkarni, M. Koopman, A. R. Boccaccini: Mat. Sci. Eng. A367 (2004), p.71.

[35] I. Dlouhy, Z. Chlup, D.N. Boccaccini, S. Atique, A.R. Boccaccini: Comp. Part A 34 (2003), p.1177.

[36] A. R. Boccaccini, S. Atique, D.N. Boccaccini, I. Dlouhy, C. Kaya: Comp. Science and Techn. (2004), in print.