Strength and Fractography of Piezoceramic Multilayer Stacks


Article Preview

Modern low-voltage piezoelectric actuators consist of a stack of piezoceramic layers (PZT) with metallic electrodes in between. Due to the use of these parts in automotive applications, a big but sensitive market is opened. During application mechanical stresses are an inherent loading of these electro-mechanical converter components. Therefore some strength of the actuators is necessary to guarantee a demanded life time. Bending and tensile tests were performed on commercial components to measure the strength in axial direction. Fracture surfaces were investigated with the methods of fractography to get information about the weakest links in the microstructure.



Edited by:

J. Dusza, R. Danzer and R. Morrell




P. Supancic et al., "Strength and Fractography of Piezoceramic Multilayer Stacks", Key Engineering Materials, Vol. 290, pp. 46-53, 2005

Online since:

July 2005




[1] K. Uchino: Piezoelectric Actuators and Ultrasonic Motors, in series: Electronic Materials: Science and Technology, Series Ed.: H. L . Tuller, Kluwer Academic Publishers (1997).

[2] N. Setter: Piezoelectric Materials in Devices, ed. by: N. Setter, Ceramics Laboratory, EPFL Swiss Federal Institute of Technology (2002).

[3] J. Pritchard, C. R. Bowen, F. Lowrie: Multilayer actuators: review, British Ceramic Transactions, Vol. 100, No. 6 (2001).


[4] A. Furata, K. Uchino: Dynamic Observation of Crack Propagation in Piezoelectric Multilayer Actuators, J. Amer. Ceram. Soc. 76, 1615-1617 (1993).

[5] C. Q. Ru, X. Mao, M. Epstein: Electric-Field Induced Interfacial Cracking in Multilayer Electrostrictive Actuators, J. Mech. Phys. Solids, Vol. 46, No. 8, 1301-1318 (1998).


[6] T. Ikeda: Fundamentals of Piezoelectricity, Oxford Science Publications, Oxford University Press (1996).

[7] D. A. Hall: Review - Nonlinearity in piezoelectric ceramics, J. Mat. Sci. 36, 4575-4601 (2001).

[8] M. Kamlah: Review Article - Ferroelectric and Ferroelastic piezoceramics - modelling of electromechanical hysteresis phenomena, Continuum Mech. Thermodyn. 13, 219-268 (2001).


[9] T. Fett, D. Munz, G. Thun: Bending Strength of a PZT ceramic under electric fields, J. Eur. Ceram. Soc., Vol. 23, 195-202 (2003).


[10] T. Fett, D. Munz, G. Thun: Tensile and bending strength of piezoelectric ceramics, J. Mat. Sci. Lett., Vol. 18, 1899-1902 (1999).

[11] R. Danzer: A General Strength Distribution Function for Brittle Materials, J. Eur. Ceram. Soc. 10, 461-472 (1992).

[12] R. Danzer: Mechanical Performance and Lifetime Prediction, in Concise Encyclopedia of Advanced Ceramic Materials, Pergamon Press, Oxford, UK, 285-298 (1994).

[13] A. Börger, M. Hangl, M. Fellner, R. Danzer: Fracture of Green and Sintered Ceramic Bodies, Key Eng. Mat. 223, 83-90 (2002).


[14] R. Danzer, M. Fellner, A. Börger, M. Damani: Evolution von Gefügedefekten in Keramiken, Fortschritte in der Praktischen Metallographie 34, 451-458 (2003).

[15] R. Danzer: Mechanical Failure of Advanced Ceramics: The Value of Fractography, Key Engineering Materials 223, 1-18 (2002).


[16] G. Galassi, G. Camporesi, G. Fabbri, A. L. Costa, E. Roncari: Processing of a multilayer bender type actuator, J. Eur. Ceram. Soc. 21, 2011-2014 (2001).


[17] D. Munz, T. Fett: Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection, Springer Series in Materials Science Vol. 36, Springer Verlag, Berlin, (1999).