Damage Detection on Typical Aeronautical Structures

Abstract:

Article Preview

The paper pursues the exploration of the feasibility and reliability of current damage detection technologies, evaluating their detection capabilities, environmental factors effects, false alarms rate, adaptability to complex geometries, etc. The method to be used is based on finite element modal updating. Three aspects, as outlined below, are covered: testing samples will be aluminium sheets (0.6m x 0.4m x 1.6mm) strengthened with riveted L-shaped stiffeners. Data will be presented from the undamaged specimens. Secondly, the testing of the samples with damage simulated at different places by temporary removal of specific rivets, thus affecting the overall structural characteristics of the structure. The models used for damage identification methods will be fine tuned to properly detect the simulated damages. Finally, using this information, the paper resumes the capabilities of the method to detect and locate the simulated damage.

Info:

Periodical:

Key Engineering Materials (Volumes 293-294)

Edited by:

W.M. Ostachowicz, J.M. Dulieu-Barton, K.M. Holford, M. Krawczuk and A. Zak

Pages:

677-684

DOI:

10.4028/www.scientific.net/KEM.293-294.677

Citation:

R. Rodríguez et al., "Damage Detection on Typical Aeronautical Structures", Key Engineering Materials, Vols. 293-294, pp. 677-684, 2005

Online since:

September 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.