Prediction of the Influence of Vibration on Structural Integrity of Elevator Suspension Ropes

Abstract:

Article Preview

Traction drive elevator installations employ ropes of variable length as a mean of car and counterweight suspension. The inertial and elastic characteristics of elevator suspension systems depend on the rope construction and vary slowly during the elevator travel. The system suffers from vibrations caused by various sources of excitation. This paper presents the analysis of the dynamic response of the suspension system employing traditional steel wire ropes as well as ropes constructed of aramid fibers. The equations describing the lateral response of the system subjected to a boundary periodic excitation are solved numerically. The results show that the entire rope is subjected to repetitive low frequency transient resonances. Consequently, the structural integrity of the suspension ropes is compromised. The issue of active vibration control and the feasibility of the integration of shape memory alloy elements within the suspension rope design are discussed.

Info:

Periodical:

Key Engineering Materials (Volumes 293-294)

Edited by:

W.M. Ostachowicz, J.M. Dulieu-Barton, K.M. Holford, M. Krawczuk and A. Zak

Pages:

761-768

DOI:

10.4028/www.scientific.net/KEM.293-294.761

Citation:

S. Kaczmarczyk "Prediction of the Influence of Vibration on Structural Integrity of Elevator Suspension Ropes ", Key Engineering Materials, Vols. 293-294, pp. 761-768, 2005

Online since:

September 2005

Export:

Price:

$38.00

[1] M.S. Triantafyllou: J. of Sound and Vibration Vol. 103 (1985), p.171.

[2] N.C. Perkins and C.D. Mote Jr.: J. of Sound and Vibration Vol. 114 (1987), p.325.

[3] J.A. Wickert and C.D. Mote Jr.: Trans. of the ASME J. of Applied Mechanics Vol. 57 (1990), p.738.

[4] S. -Y. Lee and C. D. Mote Jr.: J. of Sound and Vibration Vol. 204 (1997), p.717.

[5] Y. Terumichi, M. Ohtsuka, M. Yoshizawa, Y. Fukawa and Y Tsujioka: Nonlinear Dynamics Vol. 12 (1997), p.39.

DOI: 10.1023/a:1008224224462

[6] S. Kaczmarczyk and W. Ostachowicz: Int. J. of Acoustics and Vibration Vol. 5 (2000), p.117.

[7] C.H. Riedel and C.A. Tan: Int. J. of Non-Linear Mechanics Vol. 37 (2002), p.101.

[8] R.M. Chi and H.T. Shu: J. of Sound and Vibration, Vol. 148 (1991), p.154.

[9] S. Kaczmarczyk: J. of Sound and Vibration Vol. 208 (1997), p.243.

[10] W.D. Zhu and J. Ni: J. of Vibration and Acoustics Vol. 122 (2000) p.295.

[11] W.D. Zhu and G.Y. Xu: J. of Sound and Vibration Vol. 263 (2003) p.679.

[12] S. Kaczmarczyk and W. Ostachowicz: Key Eng. Materials Vol. 167-168 (1999), p.281.

[13] S. Kaczmarczyk and W. Ostachowicz: J. of Sound and Vibration Vol. 262 (2003), p.219.

[14] S. Kaczmarczyk and W. Ostachowicz: J. of Sound and Vibration Vol. 262 (2003), p.245.

[15] Y. Terumichi, S. Kaczmarczyk, S. Turner, M. Yoshizawa, and W. Ostachowicz: Mater. Sci. Forum Vol. 440-441 (2003), p.497.

[16] J. Koshak, R. Smith, H. Simpkins, P. Bass, C. -H. Lu and J. Walker: Elevator World Vol. LI (2003), p.180.

[17] S. Kaczmarczyk, J.P. Andrew and J.P. Adams: Mater. Sci. Forum Vol. 440-441 (2003), p.489.

[18] BRIDON International Ltd.: Ropes for Elevators (Carr Hill, Doncaster, England 1995).

[19] L. Janovsky: Elevator Mechanical Design (Elevator World Inc., Mobile U.S. 1999).

[20] R. Smith: Seminar on Ropes, Cables and Chains: Theory and Applications, Institute of Physics/ University College Northampton 23 September 2004, http: /groups. iop. org/SV/AE/Ropes. htm.

[21] C.F. Baicu, C.D. Rahn and B.D. Nibali: J. of Sound and Vibration Vol 198 (1996), p.17.

[22] W.D. Zhu, J. Ni and J. Huang: J. of Vibration and Acoustics Vol. 123 (2001), p.347.

[23] P.C. -P. Chao and C. -L. Lai: J. of Sound and Vibration Vol. 262 (2003), p.795.

[24] A.J. Żak, M.P. Cartmell, W.M. Ostachowicz, and M. Wiercigroch: Smart Mater. and Structures Vol. 12 (2003), p.338.

[25] A.J. Żak,. M.P. Cartmell, W.M. Ostachowicz: Trans. of the ASME J. of Applied Mechanics Vol. 70 (2003), p.313.

In order to see related information, you need to Login.