BMP-2 Dose-Response and Release Studies in Functionally Graded HAp

Abstract:

Article Preview

Hydroxyapatite (HAp) has been used as a biomaterial for hard tissues. Critical characteristics of biomaterials will include surface geometry, hydrophobicity and hydrophilicity, crystallinity, biodegradation rates, and release pharmacokinetics (PK) of incorporated molecules such as BMP-2. Optimizing BMP-2 for clinical application may be dependent on localized sustained release from biomaterials. We forcused on in vivo local BMP-2 PK and bone induction in two ceramics systems, based on different surface structures. The functionally graded apatites (fg-HAp) was designed by the step-wise calcinations and partial dissolution-precipitation methods. We estimated the in vivo release profile of 125I-labeled BMP-2 from fg-HAp and the dose response of bone induction by BMP-2 in the back subcutis histologically. Bulk-HAp (b-HAp) by only the step-wise calcinations was prepared as a control. The amount of BMP-2 remaining in the fg-HAp at 1 day after implantation was 83.8%, while that was 34.6% in the b-HAp. Moreover, ectopic bone formation were found surely in the fg-HAp/BMP-2 (0.5μg) system at 3 weeks, not in the b-HAp/BMP-2 system. By using fg-HAp, it is likely that an extremely low dose of BMP-2 is enough to enhance bone induction if BMP-2 is appropriately delivered to the site of action.

Info:

Periodical:

Key Engineering Materials (Volumes 309-311)

Main Theme:

Edited by:

Takashi Nakamura, Kimihiro Yamashita and Masashi Neo

Pages:

965-968

DOI:

10.4028/www.scientific.net/KEM.309-311.965

Citation:

J. Tazaki et al., "BMP-2 Dose-Response and Release Studies in Functionally Graded HAp", Key Engineering Materials, Vols. 309-311, pp. 965-968, 2006

Online since:

May 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.