Microcracking in Monocrystalline Silicon due to Indentation and Scratching

Abstract:

Article Preview

This paper discusses the cracking in monocrystalline silicon induced by microindentation with spherical and Berkovich indenters and scratching. It was found cracks always commenced in a specimen’s subsurface beneath the transformation zone. While using a Berkovich indenter the level of the maximum indentation load, Pmax, to initiate microcracking was lower than the case with a spherical indenter. In both indentation and scratching all microcracks took place at the sites of slip intersection or emanated from the bottom of a transformation zone. The paper also discussed critical loads for microcracking.

Info:

Periodical:

Edited by:

Hong-Yuan Liu, Xiaozhi Hu and Mark Hoffman

Pages:

345-350

DOI:

10.4028/www.scientific.net/KEM.312.345

Citation:

I. Zarudi and L. C. Zhang, "Microcracking in Monocrystalline Silicon due to Indentation and Scratching", Key Engineering Materials, Vol. 312, pp. 345-350, 2006

Online since:

June 2006

Export:

Price:

$35.00

[1] L.C. Zhang and N. Yasunaga: Advances in Abrasive Technology (World Scientific, Singapore, 1997).

[2] H.F. Wolf: Silicon semiconductor data (Pergamon Press, Oxford, 1969).

[3] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John and S.W. Leonard: Nature Vol. 405 (2000), p.437.

[4] I. Zarudi and L.C. Zhang: J. Mater. Proc. Tech. Vol. 84 (1998), p.149.

[5] I. Zarudi and B.S. Han: J. Mater. Proc. Tech. Vol. 140 (2003), p.641.

[6] R.R. Kunz, H.R. Clark, P.M. Nitishin and M. Rotshild: J. Mater. Res. Vol. 11 (1996), p.1228.

[7] J.E. Bradby, J.S. Williams, M.V. Wong-Leung, M.V. Swain and P. Manroe: Appl. Phys. Lett. Vol. 77 (2000), p.3749.

[8] D.L. Callahan and J.C. Morris: J. Mater. Res. Vol. 7 (1992), p.1614.

[9] D. Ge, V. Domnich and Y. Gogotsi: J. Appl. Phys. Vol. 93 (2003), p.2418.

[10] M. Tachi, S. Suprijadi, S. Arai and H. Saka: Phyl. Mag. Vol. 82 (2002), p.133.

[11] I. Zarudi and L.C. Zhang: Trib. Int. Vol. 32 (1999), p.701.

[12] I. Zarudi, J. Zou and L.C. Zhang: Appl. Phys. Lett. Vol. 82 (2003), p.874.

[13] J.C. Morris and D.L. Callagan: J. Mater. Res. Vol. 9 (1994), p.2907.

[14] D.E. Kim and N.P. Suh: J. Mater. Sci. Vol. 28 (1993), p.3895.

[15] A. Kovalchenko, Y. Gogotsi, V. Domnich and A. Erdemir: Tribol. Trans. Vol. 45 (2002), p.372.

[16] B.V. Tanikella, A.H. Somasekhar, A.T. Sowers, R.J. Nemanich and R.O. Scattergood: Appl. Phys. Lett Vol. 69 (1996), p.2870.

DOI: 10.1063/1.117346

[17] C. Jeynes, K.E. Puttic, L.C. Whitmore, K. Gartner, A.E. Gee, D.K. Millen, R.P. Webb, R.M. Peel and B.J. Sealy: Nucl. Instrum. Methods Phys. Res. Vol. 118 (1996), p.431.

[18] T.R. McHedlidze, I. Yonenaga and K. Sumino: Mater. Sci. Forum Vol. 196-201 (1995), p.1841.

[19] L.C. Zhang and I. Zarudi: Wear Vol. 229 (1999), p.669.

[20] W.C.D. Cheong and L.C. Zhang: Nanotechnology Vol. 11 (2000), p.173.

[21] I.V. Gridneva, Y.V. Milman and V.I. Trefilov: Phys. Status Solidi Vol. 14 (1972), p.177.

[22] L.C. Zhang and H. Tanaka: JSME Int. J. Vol. 14 (1999), p.546.

[23] I. Zarudi, L.C. Zhang and M.V. Swain: J. Mater. Res. Vol. 18 (2003), p.758.

[24] I. Zarudi, L.C. Zhang, J. Zou and T. Vodenitcharova: J. Mater. Res. Vol. 19 (2004), p.332.

[25] I. Zarudi, T. Nguyen and L.C. Zhang: Appl. Phys. Lett. Vol. 86 (2005), p.011922.

[26] A.G. Atkins and Y. -W. Mai: Elastic and Plastic Fracture: metals, polymers, ceramics, composites and biological materials (Ellis Horwood/John Wiley, Chichester, UK, 1985).

[27] Y. -G. Jung, A. Pajares, R. Banerjee and B.R. Lawn: Acta Mater. Vol. 52 (2003), p.3459.

[28] B.R. Lawn: Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1993).

[29] T. Hagan: J. Mat. Sci. Vol. 14 (1979), p.2975.

[30] B.R. Lawn and A.G. Evance: J. Mater. Sci. Vol. 12 (1979), p.2195.

In order to see related information, you need to Login.