Microcracking in Monocrystalline Silicon due to Indentation and Scratching


Article Preview

This paper discusses the cracking in monocrystalline silicon induced by microindentation with spherical and Berkovich indenters and scratching. It was found cracks always commenced in a specimen’s subsurface beneath the transformation zone. While using a Berkovich indenter the level of the maximum indentation load, Pmax, to initiate microcracking was lower than the case with a spherical indenter. In both indentation and scratching all microcracks took place at the sites of slip intersection or emanated from the bottom of a transformation zone. The paper also discussed critical loads for microcracking.



Edited by:

Hong-Yuan Liu, Xiaozhi Hu and Mark Hoffman






I. Zarudi and L. C. Zhang, "Microcracking in Monocrystalline Silicon due to Indentation and Scratching", Key Engineering Materials, Vol. 312, pp. 345-350, 2006

Online since:

June 2006




[1] L.C. Zhang and N. Yasunaga: Advances in Abrasive Technology (World Scientific, Singapore, 1997).

[2] H.F. Wolf: Silicon semiconductor data (Pergamon Press, Oxford, 1969).

[3] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John and S.W. Leonard: Nature Vol. 405 (2000), p.437.

[4] I. Zarudi and L.C. Zhang: J. Mater. Proc. Tech. Vol. 84 (1998), p.149.

[5] I. Zarudi and B.S. Han: J. Mater. Proc. Tech. Vol. 140 (2003), p.641.

[6] R.R. Kunz, H.R. Clark, P.M. Nitishin and M. Rotshild: J. Mater. Res. Vol. 11 (1996), p.1228.

[7] J.E. Bradby, J.S. Williams, M.V. Wong-Leung, M.V. Swain and P. Manroe: Appl. Phys. Lett. Vol. 77 (2000), p.3749.

[8] D.L. Callahan and J.C. Morris: J. Mater. Res. Vol. 7 (1992), p.1614.

[9] D. Ge, V. Domnich and Y. Gogotsi: J. Appl. Phys. Vol. 93 (2003), p.2418.

[10] M. Tachi, S. Suprijadi, S. Arai and H. Saka: Phyl. Mag. Vol. 82 (2002), p.133.

[11] I. Zarudi and L.C. Zhang: Trib. Int. Vol. 32 (1999), p.701.

[12] I. Zarudi, J. Zou and L.C. Zhang: Appl. Phys. Lett. Vol. 82 (2003), p.874.

[13] J.C. Morris and D.L. Callagan: J. Mater. Res. Vol. 9 (1994), p.2907.

[14] D.E. Kim and N.P. Suh: J. Mater. Sci. Vol. 28 (1993), p.3895.

[15] A. Kovalchenko, Y. Gogotsi, V. Domnich and A. Erdemir: Tribol. Trans. Vol. 45 (2002), p.372.

[16] B.V. Tanikella, A.H. Somasekhar, A.T. Sowers, R.J. Nemanich and R.O. Scattergood: Appl. Phys. Lett Vol. 69 (1996), p.2870.

DOI: 10.1063/1.117346

[17] C. Jeynes, K.E. Puttic, L.C. Whitmore, K. Gartner, A.E. Gee, D.K. Millen, R.P. Webb, R.M. Peel and B.J. Sealy: Nucl. Instrum. Methods Phys. Res. Vol. 118 (1996), p.431.

[18] T.R. McHedlidze, I. Yonenaga and K. Sumino: Mater. Sci. Forum Vol. 196-201 (1995), p.1841.

[19] L.C. Zhang and I. Zarudi: Wear Vol. 229 (1999), p.669.

[20] W.C.D. Cheong and L.C. Zhang: Nanotechnology Vol. 11 (2000), p.173.

[21] I.V. Gridneva, Y.V. Milman and V.I. Trefilov: Phys. Status Solidi Vol. 14 (1972), p.177.

[22] L.C. Zhang and H. Tanaka: JSME Int. J. Vol. 14 (1999), p.546.

[23] I. Zarudi, L.C. Zhang and M.V. Swain: J. Mater. Res. Vol. 18 (2003), p.758.

[24] I. Zarudi, L.C. Zhang, J. Zou and T. Vodenitcharova: J. Mater. Res. Vol. 19 (2004), p.332.

[25] I. Zarudi, T. Nguyen and L.C. Zhang: Appl. Phys. Lett. Vol. 86 (2005), p.011922.

[26] A.G. Atkins and Y. -W. Mai: Elastic and Plastic Fracture: metals, polymers, ceramics, composites and biological materials (Ellis Horwood/John Wiley, Chichester, UK, 1985).

[27] Y. -G. Jung, A. Pajares, R. Banerjee and B.R. Lawn: Acta Mater. Vol. 52 (2003), p.3459.

[28] B.R. Lawn: Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1993).

[29] T. Hagan: J. Mat. Sci. Vol. 14 (1979), p.2975.

[30] B.R. Lawn and A.G. Evance: J. Mater. Sci. Vol. 12 (1979), p.2195.

In order to see related information, you need to Login.