Synthesis of SiC Nano-Powders by Solid-Vapor Reaction


Article Preview

Silicon carbide (SiC) nano-powders are successfully synthesized by a reaction between carbon nano-powders (carbon black) and SiO gas at 1300°C for 9 hrs in dynamic argon atmosphere (flow rate; 400 cm3 min-1), using the solid-vapor reaction method. The particle size of synthesized SiC nano-powders is below 40 nm and the shape is uniform. Unexpectedly, SiC nano-fibers are also coexisted in the SiC nano-powders. The quantitative and qualitative properties of the SiC nanopowders and nano-fibers are analyzed by scanning electron microscopy (SEM), transmission electron microscope (TEM), and X-ray diffraction (XRD). Carbon residuals removed by heating over 700°C in air are estimated by thermogravimetry analysis (TGA). It is found that the SiC nanopowders are easily produced by direct synthesis via the solid-vapor reaction method. The morphological characteristics of the resulting SiC nano-powders are dependent upon the morphology of carbon black used as precursor.



Key Engineering Materials (Volumes 317-318)

Edited by:

T. Ohji, T. Sekino and K. Niihara




S. S. Lee et al., "Synthesis of SiC Nano-Powders by Solid-Vapor Reaction", Key Engineering Materials, Vols. 317-318, pp. 211-214, 2006

Online since:

August 2006




[1] M. Benaissa, J. Werckmann, G. Ehret, E. Peschiera, J. Guille and M.J. Ledoux: J. Mater. Sci. Vol. 29 (1994), p.4700.

[2] N. Keller, C. Pham-Huu, C. Crouzet, M. J. Ledoux, S. Savin-Poncet, J. B. Nougayrede and J. Bousquet: Catal. Today Vol. 53 (1999), p.535.


[3] R. Westerheide, and J. Adler: Advances in hot gas filtration technique. In Ceramic Materials and Components for Engines, ed. J. G. Heinrich and F. Aldinger (Wiley-VCH Verlag GmbH, Weinheim, Germany, 2001, p.73).


[4] K. Schulz, A. Walch, E. Freude and M. Durst: High Temperature Gas Cleaning, ed. E. Schmidt, P. Gäng, T. Pilzand A. Dittler (Institut für Mechanische Verfahrenstechnik und Mechanik der Universität Karlsruhe, Karlsruhe, Germany, 1996, p.835).


[5] K. Kijima, M. Konish: J. Ceram. Soc. Jpn. Vol. 93 (1985), p.511.

[6] Stern KH. Metallurgical and Ceramic Protective Coatings (1st edn). Chapman & Hall: London, 1996; 1-3, 194-197, 74-75, 152-153, 169.

[7] O. Paccaud and A. Derre: Chem. Vap. Deposit. Vol. 6, No. 1 (2000), p.33.

[8] R. Moene, M. Makkee and J.A. Moulijn: Appl. Catal. A General Vol. 167 (1998), p.321.

[9] C.H. Liang, G.W. Meng, L.D. Zhang, Y.C. Wu and Z. Cui: Chem. Phys. Lett. Vol. 329 (2000), p.323.

[10] Y.H. Gao, Y. Bando, K. Kurashima and T. Sato� J. Mater. Sci. Vol. 37 (2002). p. (2023).

[11] Z.L. Wang, Z.R. Dai, R.P. Gao, Z.G. Bai and J .L. Gole� Appl. Phys. Lett. Vol. 77 (2000), p.3349.

[12] J.C. Li, C.S. Lee and S.T. Lee� Chem. Phys. Lett. Vol. 355 (2002), p.147.

[13] G.W. Meng, Z. Cui, L.D. Zhang and F. Phillipp� J. Cryst. Growth Vol. 209 (2000), p.801.

[14] N.K. Sharma, W. S. Williams and A. Zangwil: J. Am. Ceram. Soc. Vol. 67, No. 11 (1984), p.715.