Synthesis of Metal Oxide Hollow Nanoparticles by Chemical Vapor Condensation Process

Abstract:

Article Preview

The influence of reaction temperature on phase evolution of iron oxide hollow nanoparticles during chemical vapor condensation (CVC) process using iron acetylacetonate was investigated. X-ray diffraction (XRD) analyses revealed that three iron oxide phases (α-Fe2O3, γ-Fe2O3, and Fe3O4) and a mixture of β-Fe2O3 and small amount of γ-Fe2O3 were synthesized at 700oC and 900oC, respectively. TEM observation disclosed that the iron oxide particles are almost composed of hollow structured nanoparticles of 10~20 nm in size and 3~5 nm in shell thickness. This result implies that reaction temperature determining various reaction parameters plays an important role for the phase- and structural evolutions of iron oxide hollow nanoparticles. Especially, the present investigation attempted to explain temperature dependence of the phase evolution of β-Fe2O3 hollow nanoparticles in association with the decomposition of iron acetylacetonate.

Info:

Periodical:

Key Engineering Materials (Volumes 317-318)

Edited by:

T. Ohji, T. Sekino and K. Niihara

Pages:

219-222

Citation:

C.W. Lee et al., "Synthesis of Metal Oxide Hollow Nanoparticles by Chemical Vapor Condensation Process", Key Engineering Materials, Vols. 317-318, pp. 219-222, 2006

Online since:

August 2006

Export:

Price:

$38.00

[1] T. Sanji, Y. Nakatsuka, S. Ohnishi, and H. Sakurai: Macromolecules Vol. 33 (2000), pp.8524-8526.

[2] H. J. Hah, J. S. Kim, B. J. Jeon, S. M. Koo, and Y. E. Lee: Chem. Commun. (2003), pp.1712-1713�.

[3] M. C. Neves, T. Trindade, A. M. B. Timmons, and J. D. Pedrosa de Jesus: Mater. Res. Bull. Vol. 36 (2001), pp.1099-1108.

[4] S. H. Park and Y. Xia: Adv. Mater. Vol. 10 (1998), pp.1045-1048.

[5] F. Caruso: Chem. Eur. J. Vol. 6 (2000), pp.413-419.

[6] H. R. Jeon, D. S. Kim, H. Kim, and C. H. Lee: Theories Appl. Chem. Eng. Vol. 8 (2002), p.2017-(2020).

[7] B. H. Kear and P. R. Strutt: Nanostructured Mater. Vol. 6 (1995), pp.227-236.

[8] J. S. Lee, S. S. Im, C. W. Lee, J. H. Yu, Y. H. Choa, and S. T. Oh: J. Nanoparticle Res. Vol 6 (2004), pp.627-631.

[9] K. Kuribayashi and R. Ueyama: Thin Solid Films Vol. 295 (1997), pp.16-18.

[10] E. Fujii, H. Torii, A. Tomozawa, R. Takayama, and T. Hirao: J. Crystal Growth Vol. 151 (1995), pp.134-139.

[11] A. M. van Diepen and T. J. A. Popma: J. Phys. Colloque. (Paris) C6 Vol. 37 (1976), p.755.

[12] B. Pal and M. Sharon: Thin Solid Films Vol. 379 (2000), pp.83-88.

[13] P. Ayyub, M. Multani, M. Barma, V. R. Palkar, and R. Vijayaraghavan: J. Phys. C: Solid State Phys. Vol. 21 (1988), pp.2229-2245.

DOI: https://doi.org/10.1088/0022-3719/21/11/014

[14] T. Gonzalez-Carreňo, M. P. Morales, and C. J. Serna: J. Mater. Sci. Lett. Vol. 13 (1994), pp.381-382.

Fetching data from Crossref.
This may take some time to load.