Nano-Structured High Purity Copper Processed by Accumulative Roll-Bonding

Abstract:

Article Preview

Accumulative roll-bonding (ARB) process was applied to an oxygen free copper for improvement of the mechanical properties via ultra grain refinement to nanometer order level. Two copper sheets 1mm thick, 30mm wide and 300mm long are degreased and wire-brushed for sound bonding. The sheets are then stacked to each other, and cold-roll-bonded by 50% reduction rolling. The sheet is then cut to the two pieces of same length and the same procedure was repeated to the sheets. The ARB process up to eight cycles (an equivalent thickness strain of 6.4) is successfully performed at ambient temperature. TEM observation reveals that ultrafine grains, hardly containing the dislocation interior, begin to develop at the third cycle, and after the sixth cycle they cover most of regions of samples. The morphology of ultrafine grains formed is different from that of aluminum alloys. Tensile strength of the ARB-processed copper increases with the equivalent strain up to a strain of ~3.2, in which it reached 390 MPa, ~2.1 times higher than the initial value. However, the strength hardly changed at the strain above ~3.2.

Info:

Periodical:

Key Engineering Materials (Volumes 317-318)

Edited by:

T. Ohji, T. Sekino and K. Niihara

Pages:

239-242

DOI:

10.4028/www.scientific.net/KEM.317-318.239

Citation:

S. H. Lee et al., "Nano-Structured High Purity Copper Processed by Accumulative Roll-Bonding", Key Engineering Materials, Vols. 317-318, pp. 239-242, 2006

Online since:

August 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.