Nano-Structured High Purity Copper Processed by Accumulative Roll-Bonding


Article Preview

Accumulative roll-bonding (ARB) process was applied to an oxygen free copper for improvement of the mechanical properties via ultra grain refinement to nanometer order level. Two copper sheets 1mm thick, 30mm wide and 300mm long are degreased and wire-brushed for sound bonding. The sheets are then stacked to each other, and cold-roll-bonded by 50% reduction rolling. The sheet is then cut to the two pieces of same length and the same procedure was repeated to the sheets. The ARB process up to eight cycles (an equivalent thickness strain of 6.4) is successfully performed at ambient temperature. TEM observation reveals that ultrafine grains, hardly containing the dislocation interior, begin to develop at the third cycle, and after the sixth cycle they cover most of regions of samples. The morphology of ultrafine grains formed is different from that of aluminum alloys. Tensile strength of the ARB-processed copper increases with the equivalent strain up to a strain of ~3.2, in which it reached 390 MPa, ~2.1 times higher than the initial value. However, the strength hardly changed at the strain above ~3.2.



Key Engineering Materials (Volumes 317-318)

Edited by:

T. Ohji, T. Sekino and K. Niihara




S. H. Lee et al., "Nano-Structured High Purity Copper Processed by Accumulative Roll-Bonding", Key Engineering Materials, Vols. 317-318, pp. 239-242, 2006

Online since:

August 2006




[1] R. Z. Valiev, N. A. Krasilnikov and N. K. Tsenev: Mater. Sci. Eng. Vol. A137 (1991), p.35.

[2] D. H. Shin, Y. S. Kim and E. J. Lavernia: Acta Mater. Vol. 49 (2001), p.2387.

[3] M. Furukawa, Z. Horita and T. G. Langdon: Metals and Materials Int. Vol. 9 (2003), p.141.

[4] R. Z. Abdulov, R. Z. Valiev, N.A. Krasilnilov: Mater. Sci. Lett. Vol. 9 (1990), p.1445.

[5] Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Acta Mater. Vol. 47 (1999), p.579.

[6] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R. G. Hong: Scripta Mater. Vol. 39 (1998), p.1221.

[7] N. Tsuji, Y. Saito, H. Utsunomiya and S. Tanigawa: Scripta Mater. Vol. 40 (1999), p.795.

[8] N. Tsuji, T. Iwata, M. Sato, S. Fujimoto and Y. Minamino: Sci. and Tech. Advan. Mater. Vol. 5 (2004), p.173.

[9] S. H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya and T. Sakai: Scripta Mater. Vol. 46 (2002), p.281.

[10] S. H. Lee, Y. Saito, T. Sakai and H. Utsunomiya: Mater. Sci. Eng. Vol. A325 (2002), p.228.

[11] S. H. Lee, Y. Saito, K. T. Park and D. H. Shin: Mater. Trans. Vol. 43 (2002), p.2320.

[12] S. H. Lee, T. Sakai, D. H. Shin: Mater. Trans. Vol. 44 (2003), p.1382.

[13] S. H. Lee, H. Inagaki, H. Utsunomiya, Y. Saito, T. Sakai: Mater. Trans. Vol. 44 (2003), p.1376.

[14] K. Neishi, T. Uchida, A. Yamauchi, K. Nakamura, Z. Horita and T. G. Langdon: Mater. Sci. Eng. Vol. A307 (2001), p.23.

[15] A. Vinogradov, V. Patlan, Y. Suzuki, K. Kitagawa and V. I. Kopylov: Acta Materialia, Vol. 50 (2002).