Surface Diffusion and Incorporation Process of Adatom in Fe-Al Multilayer System

Abstract:

Article Preview

Using the ab initio pseudopotential calculations, the surface diffusion and incorporation process at the interface of Fe-Al multilayer system were quantitatively investigated. The hollow site was most stable adsorption site on both Al (001) and Fe (001) surface. The adsorption energies were 8.62 eV for Fe/Al (001) and 5.30 eV for Al/Fe (001) system. The calculated energy barriers for the surface diffusion of adatom were 0.89 eV and 0.61 eV for each system. The energy barrier for the incorporation of Fe adatom into the Al substrate was calculated to be 0.38 eV and the energy gain of the system was 0.49 eV. However, the Al adatom required relatively large energy barrier, 0.99 eV for the incorporation into the Fe substrate resulting in 0.13 eV increase in total energy of the system.

Info:

Periodical:

Key Engineering Materials (Volumes 317-318)

Edited by:

T. Ohji, T. Sekino and K. Niihara

Pages:

411-414

DOI:

10.4028/www.scientific.net/KEM.317-318.411

Citation:

C. H. Kim et al., "Surface Diffusion and Incorporation Process of Adatom in Fe-Al Multilayer System", Key Engineering Materials, Vols. 317-318, pp. 411-414, 2006

Online since:

August 2006

Export:

Price:

$35.00

[1] I. I. Oleinik, E. Y. Tsymbal and D. G. Pettifor: Phys. Rev. B Vol. 62 (2000), p.3952.

[2] E. Emeric, P. Gas, G. Clugnet and C. Bergman: Microelectron. Eng. Vol. 50 (2000), p.285.

[3] V. Vovk, G. Schmitz and R. Kirchheim: Microelectron. Eng. Vol. 70 (2003), p.533.

[4] T. Fordell, P. Salo and M. Alatalo: Phys. Rev. B Vol. 65 (2002), p.233408.

[5] R. Banerjee, G. B. Thompson, P. M. Anderson and H. L. Fraser: Thin Solid Films Vol. 424 (2003), p.93.

[6] C. Kim, Y. -C. Chung: Jpn. J. Appl. Phys. submitted.

[7] A. Arranz and C. Palacio: Thin Solid Films Vol. 317 (1998), p.55.

[8] A. Bili´c, B. V. King and D. J. O'Connor: Surf. Sci Vol. 442 (1999), p.256.

[9] S. -P. Kim, Y. -C. Chung, S. -C. Lee, K. -R. Lee and K. -H. Lee: J. Appl. Phys. Vol. 93 (2003), p.8564.

[10] C. Kim, Y. -C. Chung: J. Magn. & Magn. Mater. (2005) to be published.

[11] C. Kim, Y. -C. Chung: J. Solid State Chem. (2005) to be published.

[12] N. R. Shivaparan, V. Krasemann, V. Shutthanandan and R. J. Smith: Surf. Sci. Vol. 365 (1996), p.78.

[13] H. Graupner, L. Hammer, K. M¨uller and D. M. Zehner: Surf. Sci. Vol. 322 (1995), p.103.

[14] G. Kresse and J. Hafner: Phys. Rev. B Vol. 47 (1993), p.558.

[15] D. Vanderbilt: Phys. Rev. B Vol. 41 (1990), p.7892.

[16] P. Hohenberg and W. Kohn: Phys. Rev. Vol. 136 (1964), p. B864.

[17] W. Kohn and L. J. Sham: Phys. Rev. Vol. 140 (1965), p. A1133.

[18] D. J. Singh: Planewaves, Pseudopotentials and the LAPW Method (Kluwer Academics, USA 1994).

[19] H. J. Monkhorst and J. D. Pack: Phys. Rev. B Vol. 13 (1976), p.5188.

[20] P. Pulay: Chem. Phys. Lett. Vol. 73 (1980), p.393.

[21] H. J´onsson, G. Mills and K. W. Jacobsen, Classical and Quantum Dynamics in Condensed Phase Simulations (World Scientific, Singapore 1998). This article was processed using the LATEX macro package with TTP style.

In order to see related information, you need to Login.