Oxynitride Glasses and Their Properties - Implications for High Temperature Performance of Silicon Nitride-Based Ceramics


Article Preview

Oxynitirde glasses are found at triple point junctions and as intergranular films in silicon nitride based ceramics. The glass chemistry, particularly the content of modifyer,usually Y or a rare earth (RE) ion, and the volume fractions of these oxynitride glass phases within the ceramic control the properties of silicon nitride, in particular, creep at high temperature. It is known that, as nitrogen substitutes for oxygen in silicate and aluminosilicate glass networks, increases are observed in glass transition and softening temperatures, viscosities (by two to three orders of magnitude), elastic moduli and microhardness. If changes are made to the RE:Si:Al ratios or different rare earth cation are substituted, properties such as viscosity can be increased by a further two to three orders of magnitude. These effects have implications for the high temperature properties of silicon nitride based ceramics, especially creep resistance. This paper provides an overview of oxynitride glasses and outlines the effect of composition on properties such as glass transition temperature and viscosity and discusses the effects on high temperature behaviour of silicon nitride ceramics.



Key Engineering Materials (Volumes 317-318)

Edited by:

T. Ohji, T. Sekino and K. Niihara




S. Hampshire and M. J. Pomeroy, "Oxynitride Glasses and Their Properties - Implications for High Temperature Performance of Silicon Nitride-Based Ceramics", Key Engineering Materials, Vols. 317-318, pp. 419-424, 2006

Online since:

August 2006




[1] K. Komeya, M. Mitomo and Y-B. Cheng (Eds): SiAlONs, Proc. Internat. Symp. Key Engineering Materials, 237, Trans Tech Publications, Zurich (2003).

[2] S. Hampshire: Chapter 3 in Structure and Properties of Ceramics, ed. M.V. Swain, Materials Science and Technology Series, Vol. 11, VCH, Weinheim, Germany, (1994) p.119.

[3] M.H. Lewis, B.D. Powell, P. Drew, R.J. Lumby, B. North, A.J. Taylor: J. Mater. Sci., 12 (1977) p.61.

[4] S. Hampshire and K.H. Jack: Proc. Brit. Ceram. Soc., 31 (1981) p.37.

[5] S. Hampshire: J. Non-cryst. Sol., 316 (2003) p.64.

[6] M.M. Chadwick, R.S. Jupp, D.S. Wilkinson: J. Am. Ceram. Soc., 76 (1993) p.385.

[7] W.E. Luecke and S.M. Wiederhorn: J. Am. Ceram. Soc., 82 (1999) p.2769.

[8] S. Sakka: J. Non-cryst. Sol., 181 (1995) p.215.

[9] P.F. Becher, S.B. Waters, C.G. Westmoreland and L. Riester: J. Am. Ceram. Soc., 85 (2002) p.897.

[10] S. Hampshire, R.A.L. Drew and K.H. Jack: Phys. Chem. Glasses, 26 (1985) p.182.

[11] S. Hampshire, E. Nestor, R. Flynn, J. -L. Besson, T. Rouxel, H. Lemercier, P. Goursat, M. Sebai, D.P. Thompson, K. Liddell: J. Euro. Ceram. Soc., 14 (1994) p.261.

DOI: https://doi.org/10.1016/0955-2219(94)90095-7

[12] M. Ohashi, K. Nakamura, K. Hirao, S. Kanzaki, S. Hampshire: J. Am. Ceram. Soc., 78 (1995) p.71.

[13] R. Ramesh, E. Nestor, M. Pomeroy and S. Hampshire: J. Euro. Ceram. Soc., 17 (1997) p. (1933).

[14] Y. Menke, V. Peltier-Baron, S. Hampshire: J. Non-Cryst. Solids, 276 (2000) p.145.

[15] H.J. Kleebe, W. Braue, H. Schmidt, G. Pezzotti and G. Ziegler: J. Euro. Ceram. Soc., 16 (1996) p.339.

[16] M. J. Hoffmann and S. Holzer: Key Eng. Mat., 237 (2003) p.141.

Fetching data from Crossref.
This may take some time to load.